12 results match your criteria: "University of Mumbai Kalina Campus[Affiliation]"

Breaking barriers in targeted Therapy: Advancing exosome Isolation, Engineering, and imaging.

Adv Drug Deliv Rev

January 2025

Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia. Electronic address:

Exosomes have emerged as promising tools for targeted drug delivery in biomedical applications and medicine. This review delves into the scientific advancements, challenges, and future prospects specifically associated with these technologies. In this work, we trace the research milestones that led to the discovery and characterization of exosomes and extracellular vesicles, and discuss strategies for optimizing the synthetic yield and the loading of these particles with various therapeutics.

View Article and Find Full Text PDF

Cathepsin B is a lysosomal cysteine protease, contributing to vital cellular homeostatic processes including protein turnover, macroautophagy of damaged organelles, antigen presentation, and in the extracellular space, it takes part in tissue remodeling, prohormone processing, and activation. However, aberrant overexpression of cathepsin B and its enzymatic activity is associated with different pathological conditions, including cancer. Cathepsin B overexpression in tumor tissues makes this enzyme an important target for smart delivery systems, responsive to the activity of this enzyme.

View Article and Find Full Text PDF

Nano-ayurvedic medicine and its potential in cancer treatment.

J Integr Med

March 2023

School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India. Electronic address:

Nano-ayurvedic medicine is an emerging field in which nanoparticles are functionalized with active principles of potent ayurvedic herbs to enhance their efficacy and target-specific delivery. Scientific advances in the past couple of decades have revealed the molecular mechanisms behind the anticancer potential of several ayurvedic herbs, attributed chiefly to their secondary metabolites including polyphenols and other active substances. With the advancement of nanotechnology, it has been established that size-, shape-, and surface-chemistry-optimized nanoparticles can be utilized as synergizing carriers for these phytochemicals.

View Article and Find Full Text PDF

Water as a reaction media in chemical transformations has several advantages in terms of safety and non-toxicity. However, dehydrative substitution reaction in water is a highly challenging operation. In this paper, we have reported a sulfamic acid-mediated dehydrative substitution reaction of benzofuryl alcohols with several nucleophiles in water towards the scalable, easily isolable, synthesis of unsymmetrically substituted triarylmethanes (TRAMs) in good to excellent yields (up to 92 %).

View Article and Find Full Text PDF

Application of Non Uniform Sampling (NUS) along with Band-selective Excitation Short-Transient (BEST) NMR experiments has been demonstrated for obtaining the important residue-specific atomic level backbone chemical shift values in short durations of time. This application has been demonstrated with both well-folded (ubiquitin) and unfolded (α-synuclein) proteins alike. With this strategy, the experiments required for determining backbone chemical shifts can be performed very rapidly, , in ∼2 hours of spectrometer time, and this data can be used to calculate the backbone folds of proteins using well established algorithms.

View Article and Find Full Text PDF

Triphala (Trl) is an ayurvedic formulation used for treating disorders of the digestive, respiratory, and nervous systems. Its anticancer properties have also been documented. We studied effects of Trl on tubulin, a target protein for several anticancer drugs, and systematically elucidated a possible antiproliferative mechanism of action of Trl.

View Article and Find Full Text PDF

Tryptone-stabilized gold nanoparticles target tubulin and inhibit cell viability by inducing an unusual form of cell cycle arrest.

Exp Cell Res

November 2017

Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Mumbai 400098, India. Electronic address:

Gold nanoparticles have been investigated extensively for their molecular mechanisms of action and anticancer potential. We report a novel, tubulin-targeted antiproliferative mechanism of action of tryptone-stabilized gold nanoparticles (TsAuNPs). TsAuNPs, synthesized using HAuCl·3HO and tryptone and characterized by a variety of spectroscopic methods and transmission electron microscopy, were found to be inhibitory to viability of human pancreatic (PANC-1), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines in a concentration-dependent manner, with highest efficacy against PANC-1 cells.

View Article and Find Full Text PDF

Background: The Parsis are one of the smallest religious communities in the world. To understand the population structure and demographic history of this group in detail, we analyzed Indian and Pakistani Parsi populations using high-resolution genetic variation data on autosomal and uniparental loci (Y-chromosomal and mitochondrial DNA). Additionally, we also assayed mitochondrial DNA polymorphisms among ancient Parsi DNA samples excavated from Sanjan, in present day Gujarat, the place of their original settlement in India.

View Article and Find Full Text PDF

From Natural Products to Designer Drugs: Development and Molecular Mechanisms Action of Novel Anti-Microtubule Breast Cancer Therapeutics.

Curr Top Med Chem

August 2017

Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Mumbai, India.

Microtubule-targeted drugs (MTDs) have been on the forefront of breast cancer chemotherapy. Classic MTDs, such as paclitaxel and their semisynthetic derivatives, have achieved considerable success in the clinical management of breast neoplasms. In order to improve the specificity and to reduce undesirable, dose-limiting toxicities of these drugs, a plethora of novel compounds are being synthesized and investigated in laboratories worldwide.

View Article and Find Full Text PDF

Elucidation of the anticancer potential and tubulin isotype-specific interactions of β-sitosterol.

J Biomol Struct Dyn

January 2018

a Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Santacruz (E), Mumbai 400098 , India.

Beta-sitosterol (β-SITO), a phytosterol present in many edible vegetables, has been reported to possess antineoplastic properties and cancer treatment potential. We have shown previously that it binds at a unique site (the 'SITO-site') compared to the colchicine binding site at the interface of α- and β-tubulin. In this study, we investigated the anticancer efficacy of β-SITO against invasive breast carcinoma using MCF-7 cells.

View Article and Find Full Text PDF

Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells.

Biomed Pharmacother

February 2017

Experimental Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Mumbai-400098, India. Electronic address:

Noscapine is an alkaloid present in the latex of Papaver somniferum. It has been known for its anticancer efficacy and lack of severe toxicities to normal tissues. Structural alterations in noscapine core architecture have produced a number of potent analogues of noscapine.

View Article and Find Full Text PDF