5 results match your criteria: "University of Maryland Rockville[Affiliation]"

Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle.

View Article and Find Full Text PDF

The current pace of crop improvement is inadequate to feed the burgeoning human population by 2050. Higher, more stable, and sustainable crop production is required against a backdrop of drought stress, which causes significant losses in crop yields. Tailoring crops for drought adaptation may hold the key to address these challenges and provide resilient production systems for future harvests.

View Article and Find Full Text PDF

The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus.

Front Microbiol

December 2015

Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University Wuhan, China ; Department of Plant Science and Landscape Architecture, Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, MD, USA.

Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colonizing citrus roots, and evaluated the impact of habitats and rootstock and scion genotypes on the AMF community structure.

View Article and Find Full Text PDF

Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate.

Front Plant Sci

June 2015

Institute for Bioscience and Biotechnology Research, University of Maryland Rockville, MD, USA ; Department of Plant Sciences and Landscape Architecture, University of Maryland Rockville, MD, USA.

Plants have evolved effective defense strategies to protect themselves from various pathogens. Salicylic acid (SA) is an essential signaling molecule that mediates pathogen-triggered signals perceived by different immune receptors to induce downstream defense responses. While many proteins play essential roles in regulating SA signaling, increasing evidence also supports important roles for signaling phospholipids in this process.

View Article and Find Full Text PDF

Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e.

View Article and Find Full Text PDF