3 results match your criteria: "University of Maryland College Park Maryland 20742 USA ogs@umd.edu.[Affiliation]"

Synthetic methods that utilise iron to facilitate C-H bond activation to yield new C-C and C-heteroatom bonds continue to attract significant interest. However, the development of these systems is still hampered by a limited molecular-level understanding of the key iron intermediates and reaction pathways that enable selective product formation. While recent studies have established the mechanism for iron-catalysed C-H arylation from aryl-nucleophiles, the underlying mechanistic pathway of iron-catalysed C-H activation/functionalisation systems which utilise electrophiles to establish C-C and C-heteroatom bonds has not been determined.

View Article and Find Full Text PDF

A highly chemoselective iron-catalyzed three-component dicarbofunctionalization of unactivated olefins with alkyl halides (iodides and bromides) and sp-hybridized Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp-hybridized nucleophiles (electron-rich and electron-deficient (hetero)aryl and alkenyl Grignard reagents), alkyl halides (tertiary alkyl iodides/bromides and perfluorinated bromides), and unactivated olefins bearing diverse functional groups including tethered alkenes, ethers, protected alcohols, aldehydes, and amines to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines a three-component radical cascade cyclization/arylation that forges three new C-C bonds.

View Article and Find Full Text PDF

Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized a mechanistically driven approach. Mechanistic studies support the diffusion of alkyl radical intermediates out of the solvent cage to participate in an intra- or intermolecular radical cascade with a range of VCPs followed by re-entering the Fe radical cross-coupling cycle to undergo (stereo)selective C(sp)-C(sp) bond formation. This work provides a proof-of-concept of the use of vinyl cyclopropanes as synthetically useful 1,5-synthons in Fe-catalyzed conjunctive cross-couplings with alkyl halides and aryl/vinyl Grignard reagents.

View Article and Find Full Text PDF