84 results match your criteria: "University of Maine. Orono[Affiliation]"

Linking genotype to phenotype is a primary goal for understanding the genomic underpinnings of evolution. However, little work has explored whether patterns of linked genomic and phenotypic differentiation are congruent across natural study systems and traits. Here, we investigate such patterns with a meta-analysis of studies examining population-level differentiation at subsets of loci and traits putatively responding to divergent selection.

View Article and Find Full Text PDF

The C incubation method for net primary production (NPP) has limited spatial/temporal resolution, while satellite approaches cannot provide direct information at depth. With chlorophyll-a and backscatter measurements from BGC-Argo floats, we quantified year-round NPP in the western North Atlantic Ocean using both the Carbon-based Productivity Model (CbPM) and Photoacclimation Productivity Model (PPM). Comparison with NPP profiles from C incubation measurements showed advantages and limitations of both models.

View Article and Find Full Text PDF

This research aimed to uncover how the nutrition literacy domains (functional, interactive, critical) influence the dietary decisions of young adults in college. For this qualitative study, undergraduate college students aged 18-24 years old ( = 24) were recruited to participate in focus groups. The focus group transcripts were independently coded for primary and secondary themes using a grounded theory approach and a basic thematic analysis.

View Article and Find Full Text PDF

Phytoplankton accessory pigments are commonly used to estimate phytoplankton size classes, particularly during development and validation of biogeochemical models and satellite ocean color-based algorithms. The diagnostic pigment analysis (DPA) is based on bulk measurements of pigment concentrations and relies on assumptions regarding the presence of specific pigments in different phytoplankton taxonomic groups. Three size classes are defined by the DPA: picoplankton, nanoplankton, and microplankton.

View Article and Find Full Text PDF

Alloys or smelted metal mixtures have served as cornerstones of human civilization. The advent of smelted copper and tin, , bronze, in the 4 millennium B.C.

View Article and Find Full Text PDF

The H1N1 "Spanish influenza" pandemic of 1918-1919 caused the highest known number of deaths recorded for a single pandemic in human history. Several theories have been offered to explain the virulence and spread of the disease, but the environmental context remains underexamined. In this study, we present a new environmental record from a European, Alpine ice core, showing a significant climate anomaly that affected the continent from 1914 to 1919.

View Article and Find Full Text PDF

Overwintering often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.We used a combination of controlled laboratory assays, and collaborative field collections of invasive in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.

View Article and Find Full Text PDF

During the North Atlantic Aerosols and Marine Ecosystems Study in the western North Atlantic, float-based profiles of fluorescent dissolved organic matter and backscattering exhibited distinct spike layers at  300 m. The locations of the spikes were at depths similar or shallower to where a ship-based scientific echo sounder identified layers of acoustic backscatter, an Underwater Vision Profiler detected elevated concentration of zooplankton, and mesopelagic fish were sampled by a mesopelagic net tow. The collocation of spike layers in bio-optical properties with mesopelagic organisms suggests that some can be detected with float-based bio-optical sensors.

View Article and Find Full Text PDF

, the causative agent of anthrax, is a considerable global health threat affecting wildlife, livestock, and the general public. In this study, whole-genome sequence analysis of over 350 isolates was used to establish a new high-resolution global genotyping framework that is both biogeographically informative and compatible with multiple genomic assays. The data presented in this study shed new light on the diverse global dissemination of this species and indicate that many lineages may be uniquely suited to the geographic regions in which they are found.

View Article and Find Full Text PDF

Macrophysiological analyses are useful to predict current and future range limits and improve our understanding of endotherm macroecology, but such analyses too often rely on oversimplifications of endothermic thermoregulatory and energetic physiology, which lessens their applicability. We detail some of the major issues with macrophysiological analyses based on the classic Scholander-Irving model of endotherm energetics in the hope that it will encourage other research teams to more appropriately integrate physiology into macroecological analyses.

View Article and Find Full Text PDF

Investigation of organic compounds in ice cores can potentially unlock a wealth of new information in these climate archives. We present results from the first ever ice core drilled on sub-Antarctic island Bouvet, representing a climatologically important but understudied region. We analyze a suite of novel and more familiar organic compounds in the ice core, alongside commonly measured ions.

View Article and Find Full Text PDF

Metapopulation-structured species can be negatively affected when landscape fragmentation impairs connectivity. We investigated the effects of urbanization on genetic diversity and gene flow for two sympatric amphibian species, spotted salamanders () and wood frogs (), across a large (>35,000 km) landscape in Maine, USA, containing numerous natural and anthropogenic gradients. Isolation-by-distance (IBD) patterns differed between the species.

View Article and Find Full Text PDF

The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological-human systems; and (d) potential phenology-focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events.

View Article and Find Full Text PDF

Species' movements affect their response to environmental change but movement knowledge is often highly uncertain. We now have well-established methods to integrate movement knowledge into conservation practice but still lack a framework to deal with uncertainty in movement knowledge for environmental decisions. We provide a framework that distinguishes two dimensions of species' movement that are heavily influenced by uncertainty: about movement and of movement to environmental decisions.

View Article and Find Full Text PDF

Genomics of rapid ecological divergence and parallel adaptation in four tidal marsh sparrows.

Evol Lett

August 2019

Fuller Evolutionary Biology Program Cornell Laboratory of Ornithology Ithaca New York 14850.

Theory suggests that different taxa having colonized a similar, challenging environment will show parallel or lineage-specific adaptations to shared selection pressures, but empirical examples of parallel evolution in independent taxa are exceedingly rare. We employed comparative genomics to identify parallel and lineage-specific responses to selection within and among four species of North American sparrows that represent four independent, post-Pleistocene colonization events by an ancestral, upland subspecies and a derived salt marsh specialist. We identified multiple cases of parallel adaptation in these independent comparisons following salt marsh colonization, including selection of 12 candidate genes linked to osmoregulation.

View Article and Find Full Text PDF

Biogeochemical Argo floats, profiling to 2,000-m depth, are being deployed throughout the Southern Ocean by the Southern Ocean Carbon and Climate Observations and Modeling program (SOCCOM). The goal is 200 floats by 2020, to provide the first full set of annual cycles of carbon, oxygen, nitrate, and optical properties across multiple oceanographic regimes. Building from no prior coverage to a sparse array, deployments are based on prior knowledge of water mass properties, mean frontal locations, mean circulation and eddy variability, winds, air-sea heat/freshwater/carbon exchange, prior Argo trajectories, and float simulations in the Southern Ocean State Estimate and Hybrid Coordinate Ocean Model (HYCOM).

View Article and Find Full Text PDF

Climate change has altered disturbance regimes in many ecosystems, and predictions show that these trends are likely to continue. The frequency of disturbance events plays a particularly important role in communities by selecting for disturbance-tolerant taxa.However, ecologists have yet to disentangle the influence of disturbance frequency per se and time since last disturbance, because more frequently disturbed systems have also usually been disturbed more recently.

View Article and Find Full Text PDF

Self-thinning and site maximum carrying capacity are key concepts for understanding and predicting ecosystem dynamics as they represent the outcome of several fundamental ecological processes (e.g., mortality and growth).

View Article and Find Full Text PDF

Grazing effects on arid and semi-arid grasslands can be constrained by aridity. Plant functional groups (PFGs) are the most basic component of community structure (CS) and biodiversity & ecosystem function (BEF). They have been suggested as identity-dependent in quantifying the response to grazing intensity and drought severity.

View Article and Find Full Text PDF

Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series.

View Article and Find Full Text PDF

Population increases over the past several decades provide natural settings in which to study the evolutionary processes that occur during bottleneck, growth, and spatial expansion. We used parallel natural experiments of historical decline and subsequent recovery in two sympatric pinniped species in the Northwest Atlantic, the gray seal () and harbor seal (), to study the impact of recent demographic change in genomic diversity. Using restriction site-associated DNA sequencing, we assessed genomic diversity at over 8,700 polymorphic gray seal loci and 3,700 polymorphic harbor seal loci in samples from multiple cohorts collected throughout recovery over the past half-century.

View Article and Find Full Text PDF

The freshwater budget of the Arctic and sub-polar North Atlantic Oceans has been changing due, primarily, to increased river runoff, declining sea ice and enhanced melting of Arctic land ice. Since the mid-1990s this latter component has experienced a pronounced increase. We use a combination of satellite observations of glacier flow speed and regional climate modeling to reconstruct the land ice freshwater flux from the Greenland ice sheet and Arctic glaciers and ice caps for the period 1958-2016.

View Article and Find Full Text PDF

Understanding the context from which evidence emerges is of paramount importance in reaching robust conclusions in scientific inquiries. This is as true of the present as it is of the past. In a trans-disciplinary study such as More et al.

View Article and Find Full Text PDF

Introduction: Both genetic and infectious diseases can result in skeletal muscle degeneration, inflammation, pain, and/or weakness. Duchenne muscular dystrophy (DMD) is the most common congenital muscle disease. DMD causes progressive muscle wasting due to mutations in Dystrophin.

View Article and Find Full Text PDF