5 results match your criteria: "University of Louvain Medical School and International Institute of Cellular and Molecular Pathology[Affiliation]"
Eur J Biochem
June 1998
Hormone and Metabolic Research Unit, University of Louvain Medical School and International Institute of Cellular and Molecular Pathology, Brussels, Belgium.
Multiple alignment of several isozyme sequences of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase revealed conserved residues in the 2-kinase domain. Among these residues, three asparagine residues (Asn76, Asn97 and Asn133; numbering refers to the liver isozyme sequence) and three threonine residues (Thr132, Thr134 and Thr135) are located near the fructose 6-phosphate-binding site in the crystal structure of the bifunctional enzyme. The role of these residues in substrate binding and catalysis in the 6-phosphofructo-2-kinase domain has been studied by mutagenesis to alanine.
View Article and Find Full Text PDFDNA Cell Biol
September 1997
Hormone and Metabolic Research Unit, Louvain University Medical School and International Institute of Cellular and Molecular Pathology, Brussels, Belgium.
We have shown previously that rat hepatoma FTO-2B cells express two mRNAs, called F (fetal) and L (liver), from distinct promoters of the same gene coding for 6-phosphofructo-2-kinase (PFK-2). This enzyme catalyzes the synthesis of fructose 2,6-bisphosphate, an allosteric stimulator of glycolysis. We have now found that glucose, as well as lactate and pyruvate, increases the concentration of the F and L mRNAs.
View Article and Find Full Text PDFNucleic Acids Res
July 1997
Hormone and Metabolic Research Unit, Louvain University Medical School and International Institute of Cellular and Molecular Pathology, 75 Avenue Hippocrate, B-1200 Brussels, Belgium.
There is one class of genes whose expression increases at the G1/S transition of the cell cycle. One of these genes codes for 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2), an enzyme that controls glycolysis. The cell-cycle regulation of the PFK-2 gene depends on a binding site for the transcription factor E2F located at the 5'end of the first exon and involves not only a transcriptional, but also a post-transcriptional, mechanism.
View Article and Find Full Text PDFDNA Cell Biol
June 1997
Louvain University Medical School and International Institute of Cellular and Molecular Pathology, Brussels, Belgium.
Transcription from the liver promoter of a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) gene depends on the presence of glucocorticoids that act via a glucocorticoid response unit (GRU) located in the first intron. The promoter and the GRU are in a constitutively open chromatin configuration. To determine how glucocorticoids would affect factor binding to the GRU in absence of chromatin remodeling, we have used a combination of in vitro DNA-binding assays and in vivo genomic footprinting in rat hepatocytes and hepatoma cells.
View Article and Find Full Text PDFIn a structural model of the 2-kinase domain of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase based on the analogy with adenylate kinase, Lys-174, Asp-179 and Asp-191 residues are located in the putative active site. Asp-179 and Asp-191 are conserved in all known 6-phosphofructo-2-kinase sequences. In contrast, Lys-174 is conserved except in a yeast isoenzyme, fbp26, where it is replaced by glycine.
View Article and Find Full Text PDF