67 results match your criteria: "University of Louvain Faculty of Medicine[Affiliation]"

Insulin secretion is triggered by an increase in the cytosolic calcium concentration ([Ca(2+)](c)) in β-cells. Ca(2+)-induced exocytosis of insulin granules can be augmented by metabolic amplification (unknown signals generated through glucose metabolism) or neurohormonal amplification (in particular cAMP mediated). Functional actin microfilaments are not required for metabolic amplification, but their possible role in cAMP-mediated amplification is unknown.

View Article and Find Full Text PDF

Do pancreatic β cells "taste" nutrients to secrete insulin?

Sci Signal

August 2012

Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, Avenue Hippocrate 55, B-1200 Brussels, Belgium.

Insulin secretion from pancreatic β cells is controlled by nutrients, hormones, and neurotransmitters. Unlike the latter, which work through classic receptors, glucose and most other nutrients do not interact with membrane receptors but must be metabolized by β cells to induce insulin secretion. Studies have revealed the presence of umami and sweet taste receptors and their downstream effectors in β cells.

View Article and Find Full Text PDF

Latrunculin depolymerizes and jasplakinolide polymerizes β-cell actin microfilaments. Both increase insulin secretion when Ca(2+) enters β-cells during depolarization by glucose, sulfonylureas or potassium. Mouse islets were held hyperpolarized with diazoxide, and stimulated with acetylcholine to test the role of microfilaments in insulin secretion triggered by intracellular Ca(2+) mobilization and store-operated Ca(2+) entry (SOCE).

View Article and Find Full Text PDF

Glucose-induced insulin secretion (IS) by β-cells is controlled by two pathways. The triggering pathway involves ATP-sensitive potassium (K(ATP)) channel-dependent depolarization, Ca(2+) influx, and rise in the cytosolic Ca(2+) concentration ([Ca(2+)](c)), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca(2+)](c).

View Article and Find Full Text PDF

Two pathways control glucose-induced insulin secretion (IS) by beta-cells. The triggering pathway involves ATP-sensitive potassium (K(ATP)) channel-dependent depolarization, Ca(2+) influx, and a rise in the cytosolic Ca(2+) concentration ([Ca(2+)](c)), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca(2+)](c).

View Article and Find Full Text PDF

Aims/hypothesis: Glucose-induced insulin secretion is attributed to a rise of beta cell cytosolic free [Ca(2+)] ([Ca(2+)](c)) (triggering pathway) and amplification of the action of Ca(2+). This concept of amplification rests on observations that glucose can increase Ca(2+)-induced insulin secretion without further elevating an imposed already high [Ca(2+)](c). However, it remains possible that this amplification results from an increase in [Ca(2+)] just under the plasma membrane ([Ca(2+)](SM)), which escaped detection by previous measurements of global [Ca(2+)](c).

View Article and Find Full Text PDF

Objective: We studied how glucose and ATP-sensitive K(+) (K(ATP)) channel modulators affect alpha-cell [Ca(2+)](c).

Research Design And Methods: GYY mice (expressing enhanced yellow fluorescent protein in alpha-cells) and NMRI mice were used. [Ca(2+)](c), the K(ATP) current (I(KATP), perforated mode) and cell metabolism [NAD(P)H fluorescence] were monitored in single alpha-cells and, for comparison, in single beta-cells.

View Article and Find Full Text PDF

Ca2+ ions are the most ubiquitous second messenger found in all cells, and play a significant role in controlling regulated secretion from neurons, endocrine, neuroendocrine and exocrine cells. Here, we describe microscopic techniques to image regulated secretion, a target of Ca2+ signalling. The first of these, total internal reflection fluorescence (TIRF), is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation (<150 nm).

View Article and Find Full Text PDF

The contribution of Na(+)/H(+) exchange (achieved by NHE proteins) to the regulation of beta-cell cytosolic pH(c), and the role of pH(c) changes in glucose-induced insulin secretion are disputed and were examined here. Using real-time PCR, we identified plasmalemmal NHE1 and intracellular NHE7 as the two most abundant NHE isoforms in mouse islets. We, therefore, compared insulin secretion, cytosolic free Ca(2+) ([Ca(2+)](c)) and pH(c) in islets from normal mice and mice bearing an inactivating mutation of NHE1 (Slc9A1-swe/swe).

View Article and Find Full Text PDF

Nutrient control of insulin secretion in perifused adult pig islets.

Diabetes Metab

December 2007

Unit of Endocrinology and Metabolism, University of Louvain Faculty of Medicine, UCL 55.30, avenue Hippocrate 55, 1200 Brussels, Belgium.

Objectives: Xenotransplantation of pig islets is a potential solution to the shortage of human islets, but our knowledge of how these islets secrete insulin in response to nutrients is still fragmentary. This was the question addressed in the present study.

Methods: After 24 h culture adult pig islets were perifused to characterize the dynamics of insulin secretion.

View Article and Find Full Text PDF

A current model ascribes glucose-induced insulin secretion to the interaction of a triggering pathway (K(ATP) channel-dependent Ca(2+) influx and rise in cytosolic [Ca(2+)](c)) and an amplifying pathway (K(ATP) channel-independent augmentation of secretion without further increase of [Ca(2+)](c)). However, several studies of sulfonylurea receptor 1 null mice (Sur1KO) failed to measure significant effects of glucose in their islets lacking K(ATP) channels. We addressed this issue that challenges the model.

View Article and Find Full Text PDF

In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice.

View Article and Find Full Text PDF

Glucose-induced insulin secretion requires a rise in beta-cell cytosolic Ca2+ ([Ca2+]c) that triggers exocytosis and a mechanistically unexplained amplification of the action of [Ca2+]c. Insulin granules are kept acidic by luminal pumping of protons with simultaneous Cl- uptake to maintain electroneutrality. Experiments using patched, dialyzed beta-cells prompted the suggestion that acute granule acidification by glucose underlies amplification of insulin secretion.

View Article and Find Full Text PDF

Glucose induces insulin secretion (IS) and also potentiates the insulin-releasing action of secretagogues such as arginine and sulfonylureas. This potentiating effect is known to be impaired in type 2 diabetic patients, but its cellular mechanisms are unclear. IS and cytosolic Ca(2+) concentration ([Ca(2+)](i)) were measured in mouse islets during perifusion with 3-15 mmol/l glucose (G3-G15, respectively) and pulse or stepwise stimulation with 1-10 mmol/l arginine or 5-250 micromol/l tolbutamide.

View Article and Find Full Text PDF

The contribution of Ca(2+) release from intracellular stores to the rise in the free cytosolic Ca(2+) concentration ([Ca(2+)](c)) triggered by Ca(2+) influx was investigated in mouse pancreatic beta-cells. Depolarization of beta-cells by 45 mm K(+) (in the presence of 15 mm glucose and 0.1 mm diazoxide) evoked two types of [Ca(2+)](c) responses: a monotonic and sustained elevation; or a sustained elevation superimposed by a transient [Ca(2+)](c) peak (TCP) (40-120 s after the onset of depolarization).

View Article and Find Full Text PDF

In normal beta-cells glucose induces insulin secretion by activating both a triggering pathway (closure of K(ATP) channels, depolarization, and rise in cytosolic [Ca(2+)](i)) and an amplifying pathway (augmentation of Ca(2+) efficacy on exocytosis). It is unclear if and how nutrients can regulate insulin secretion by beta-cells lacking K(ATP) channels (Sur1 knockout mice). We compared glucose- and amino acid-induced insulin secretion and [Ca(2+)](i) changes in control and Sur1KO islets.

View Article and Find Full Text PDF

In contrast to pancreatic islets, isolated beta-cells stimulated by glucose display irregular and asynchronous increases in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). Here, clusters of 5-30 cells were prepared from a single mouse islet or from pools of islets, loaded with fura-2, and studied with a camera-based system. [Ca(2+)](i) oscillations were compared in pairs of clusters by computing the difference in period and a synchronization index lambda.

View Article and Find Full Text PDF

Cellular mechanisms of insulin secretion.

Ann Endocrinol (Paris)

February 2004

Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, B-1200 Brussels, Belgium.

View Article and Find Full Text PDF

Chronic hyperglycemia has been shown to induce either a lack of response or an increased sensitivity to glucose in pancreatic beta-cells. We reinvestigated this controversial issue in a single experimental model by culturing rat islets for 1 wk in 10 or 30 mmol/l glucose (G10, Controls; or G30, High-glucose islets) before testing the effect of stepwise glucose stimulation from G0.5 to G20 on key beta-cell stimulus-secretion coupling events.

View Article and Find Full Text PDF

Two sarcoendoplasmic reticulum Ca(2+)-ATPases, SERCA3 and SERCA2b, are expressed in pancreatic islets. Immunocytochemistry showed that SERCA3 is restricted to beta-cells in the mouse pancreas. Control and SERCA3-deficient mice were used to evaluate the role of SERCA3 in beta-cell cytosolic-free Ca(2+) concentration ([Ca(2+)](c)) regulation, insulin secretion, and glucose homeostasis.

View Article and Find Full Text PDF

Glucose-induced insulin secretion is pulsatile. We investigated how the triggering pathway (rise in beta-cell [Ca(2+)](i)) and amplifying pathway (greater Ca(2+) efficacy on exocytosis) influence this pulsatility. Repetitive [Ca(2+)](i) pulses were imposed by high K(+)+ diazoxide in single mouse islets.

View Article and Find Full Text PDF

Aims/hypothesis: In normal mouse islets, glucose induces synchronous cytoplasmic [Ca(2+)](i) oscillations in beta cells and pulses of insulin secretion. We investigated whether this fine regulation of islet function is preserved in hyperglycaemic and hyperinsulinaemic ob/ obmice.

Methods: Intact islets from ob/ ob mice and their lean littermates were used after overnight culture for measurement of [Ca(2+)](i) and insulin secretion.

View Article and Find Full Text PDF

Glucose increases insulin secretion by raising cytoplasmic Ca(2+) ([Ca(2+)](i)) in beta-cells (triggering pathway) and augmenting the efficacy of Ca(2+) on exocytosis (amplifying pathway). It has been suggested that glutamate formed from alpha-ketoglutarate is a messenger of the amplifying pathway (Maechler, P., and Wollheim, C.

View Article and Find Full Text PDF

Thapsigargin (TG), a blocker of Ca(2+) uptake by the endoplasmic reticulum (ER), was used to evaluate the contribution of the organelle to the oscillations of cytosolic Ca(2+) concentration ([Ca(2+)](c)) induced by repetitive Ca(2+) influx in mouse pancreatic beta-cells. Because TG depolarized the plasma membrane in the presence of glucose alone, extracellular K(+) was alternated between 10 and 30 mM in the presence of diazoxide to impose membrane potential (MP) oscillations. In control islets, pulses of K(+), mimicking regular MP oscillations elicited by 10 mM glucose, induced [Ca(2+)](c) oscillations whose nadir remained higher than basal [Ca(2+)](c).

View Article and Find Full Text PDF

That oscillations of the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) in beta-cells induce oscillations of insulin secretion is not disputed, but whether metabolism-driven oscillations of secretion can occur in the absence of [Ca(2+)](i) oscillations is still debated. Because this possibility is based partly on the results of experiments using islets from aged, hyperglycemic, hyperinsulinemic ob/ob mice, we compared [Ca(2+)](i) and insulin secretion patterns of single islets from 4- and 10-month-old, normal NMRI mice to those of islets from 7- and 10-month-old ob/ob mice (Swedish colony) and their lean littermates. The responses were subjected to cluster analysis to identify significant peaks.

View Article and Find Full Text PDF