3 results match your criteria: "University of Liège B-4000 Liège (Sart Tilman) Belgium jc.monbaliu@uliege.be.[Affiliation]"

An innovative approach to chalcogenide precursor synthesis and their subsequent use for the production of CdX (X = S, Se, Te) quantum dots (QDs) in water under scalable and intensified continuous flow conditions is introduced. Herein, tris(2-carboxyethyl)phosphine (TCEP) is identified as a novel, efficient and water-soluble vehicle for chalcogenide transfer to form CdX QDs under aqueous conditions. A comprehensive exploration of critical process parameters, including pH, chalcogen excess, and residence time, utilizing a Design of Experiments (DoE) approach is reported.

View Article and Find Full Text PDF

The biocompatibility, tunable degradability and broad functionalities of polyphosphoesters and their potential for biomedical applications have stimulated a renewed interest from Chemistry, Medicinal Chemistry and Polymer Sciences. Commercial applications of polyphosphoesters as biomaterials are still hampered because of the time and resource-intensive sourcing of their corresponding monomers, in addition to the corrosive and sensitive nature of their intermediates and by-products. Here, we present a groundbreaking challenge for sourcing the corresponding cyclic phosphate monomers by a different approach.

View Article and Find Full Text PDF