4 results match your criteria: "University of Illinois-School of Medicine at Rockford[Affiliation]"

Fretting-corrosion at the Implant-Abutment Interface Simulating Clinically Relevant Conditions.

Dent Mater

November 2024

Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA; Department of Biomedical Sciences, University of Illinois-School of Medicine at Rockford, Rockford, IL, USA. Electronic address:

Objective: Implant treatment is provided to individuals with normal, idealized masticatory forces and also to patients with parafunctional habits such as grinding, clenching, and bruxing. Dental erosion is a common increasing condition and is reported to affect 32 % of adults, increasing with age. This oral environment is conducive to tribocorrosion and the potential loss of materials from the implant surfaces and interfaces with prosthetic components.

View Article and Find Full Text PDF

Fretting-corrosion is one of the failure processes in many applications, including biomedical implants. For example, the modern design of hip implants with multiple components offers better flexibility and inventory storage. However, it will trigger the fretting at the implant interfaces with a small displacement amplitude (< 5 µm) and usually in a partial slip region.

View Article and Find Full Text PDF

Developing coatings for various applications is an area of research of uttermost importance, to protect surfaces from severe damage by improving the wear and corrosion resistance of the materials. Recently, there has been increasing interest in ceramic coatings for biomedical applications, as the surface may become more inert in nature for the biological reactions and potentially increase the lifespan of the implants and minimize the side effects on the patients. Hence this study is focused on the tribocorrosion behavior of the ceramic coatings for the hip implant application on commonly used implant titanium alloy.

View Article and Find Full Text PDF

Titanium (Ti) is widely used in biomedical devices due to its recognized biocompatibility. However, implant failures and subsequent clinical side effects are still recurrent. In this context, improvements can be achieved by designing biomaterials where the bulk and the surface of Ti are independently tailored.

View Article and Find Full Text PDF