7 results match your criteria: "University of Helsinki FI-00014 Helsinki Finland.[Affiliation]"

In this work, we disclose a series of seven quadrupolar centrosymmetric 1,4-dihydropyrrolo[3,2-]pyrroles (DHPPs) linked to the two peripheral, strongly electron-accepting heterocycles such as benzoxadiazole, benzothiadiazole and benzoselenadiazole. This represents the first study probing the influence of electron-deficient heterocycles, rather that small electron-withdrawing substituents, on photophysics of DHPPs. These new acceptor-donor-acceptor hybrid dyes exhibit an appreciable combination of photophysical properties including absorption maxima in the range of 470-620 nm, and emission in the range of 500-720 nm with fluorescence quantum yields reaching 0.

View Article and Find Full Text PDF

Nitrate ion-based chemical ionization mass spectrometry (NO -CIMS) is widely used for detection of highly oxygenated organic molecules (HOMs). HOMs are known to participate in molecular clustering and new particle formation and growth, and hence understanding the formation pathways and amounts of these compounds in the atmosphere is essential. However, the absence of analytical standards prevents robust quantification of HOM concentrations.

View Article and Find Full Text PDF

Developing azobenzene photoswitches capable of selective and efficient photoisomerization by long-wavelength excitation is an enduring challenge. Herein, rapid isomerization from the - to -state of two -functionalized bistable azobenzenes with near-unity photoconversion efficiency was driven by triplet energy transfer upon red and near-infrared (up to 770 nm) excitation of porphyrin photosensitizers in catalytic micromolar concentrations. We show that the process of triplet-sensitized isomerization is efficient even when the sensitizer triplet energy is substantially lower (>200 meV) than that of the azobenzene used.

View Article and Find Full Text PDF

Ethionamide (ETH) is a commercial drug, used as a second-line resource to neutralize infections. It is proven that its metabolization in the organism leads to the formation of the active form of the drug, but some metabolic pathways may lead to the loss of its activity. Our work proved that the presence of oxidized methionine in cells could influence ETH's degradation, leading to the appearance of an inactive metabolite that is detectable by HPLC and mass spectrometry.

View Article and Find Full Text PDF

Erythrocyte-based drug delivery systems have been investigated for their biocompatibility, long circulation time, and capability to transport cargo all around the body, thus presenting enormous potential in medical applications. In this study, we investigated hybrid nanoparticles consisting of nano-sized autologous or allogeneic red blood cell (RBC) membranes encapsulating porous silicon nanoparticles (PSi NPs). These NPs were functionalized with a model cancer antigen TRP2, which was either expressed on the surface of the RBCs by a cell membrane-mimicking copolymer polydimethylsiloxane--poly-2-methyl-2-oxazoline, or attached on the PSi NPs, thus hidden within the encapsulation.

View Article and Find Full Text PDF

Partially deacetylated chitin nanofibers (ChNF) were isolated from shell residues derived from crab biomass and used to prepare hydrogels, which were easily transformed into continuous microfibers by wet-spinning. We investigated the effect of ChNF solid content, extrusion rate and coagulant type, which included organic (acetone) and alkaline (NaOH and ammonia) solutions, on wet spinning. The properties of the microfibers and associated phenomena were assessed by tensile strength, quartz crystal microgravimetry, dynamic vapor sorption (DVS), thermogravimetric analysis and wide-angle X-ray scattering (WAXS).

View Article and Find Full Text PDF

Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia).

View Article and Find Full Text PDF