2 results match your criteria: "University of Heidelberg. INF 253[Affiliation]"

3D hydrogel-based microcapsules as an in vitro model to study tumorigenicity, cell migration and drug resistance.

Acta Biomater

April 2022

Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 6, Erlangen 91058, Germany; Institute for Molecular Systems Engineering, University of Heidelberg. INF 253, Heidelberg 69120, Germany. Electronic address:

In this work, we analyzed the reliability of alginate-gelatin microcapsules as artificial tumor model. These tumor-like scaffolds are characterized by their composition and stiffness (∼25 kPa), and their capability to restrict -but not hinder- cell migration, proliferation and release from confinement. Hydrogel-based microcapsules were initially utilized to detect differences in mechano-sensitivity between MCF7 and MDA-MB-231 breast cancer cells, and the endothelial cell line EA.

View Article and Find Full Text PDF

Orthogonally functionalized binary micropatterned substrates are produced using a novel protocol. The use of adequate peptido-mimetics enables an unprecedented segregation of purified αvβ3 and α5β1 integrins in adjacent microislands and evidences the preference of U2OS cells to colocalize such receptors. Moreover, this tendency can be altered by varying the geometry and composition of the micropatterns.

View Article and Find Full Text PDF