13 results match your criteria: "University of Grenoble Alpes-EMBL-CNRS[Affiliation]"

Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase.

J Mol Biol

January 2018

Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. Electronic address:

The intrinsic editing capacities of aminoacyl-tRNA synthetases ensure a high-fidelity translation of the amino acids that possess effective non-cognate aminoacylation surrogates. The dominant error-correction pathway comprises deacylation of misaminoacylated tRNA within the aminoacyl-tRNA synthetase editing site. To assess the origin of specificity of Escherichia coli leucyl-tRNA synthetase (LeuRS) against the cognate aminoacylation product in editing, we followed binding and catalysis independently using cognate leucyl- and non-cognate norvalyl-tRNA and their non-hydrolyzable analogues.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) regulating gene expression at the chromatin level are widespread among eukaryotes. However, their functions and the mechanisms by which they act are not fully understood. Here, we identify new fission yeast regulatory lncRNAs that are targeted, at their site of transcription, by the YTH domain of the RNA-binding protein Mmi1 and degraded by the nuclear exosome.

View Article and Find Full Text PDF

Zooming in on Transcription Preinitiation.

J Mol Biol

June 2016

European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France; Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, 38042, Grenoble, Cedex 9, France; The School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK. Electronic address:

Class II gene transcription commences with the assembly of the Preinitiation Complex (PIC) from a plethora of proteins and protein assemblies in the nucleus, including the General Transcription Factors (GTFs), RNA polymerase II (RNA pol II), co-activators, co-repressors, and more. TFIID, a megadalton-sized multiprotein complex comprising 20 subunits, is among the first GTFs to bind the core promoter. TFIID assists in nucleating PIC formation, completed by binding of further factors in a highly regulated stepwise fashion.

View Article and Find Full Text PDF

ACEMBLing a multiprotein transmembrane complex: the functional SecYEG-SecDF-YajC-YidC Holotranslocon protein secretase/insertase.

Methods Enzymol

January 2016

School of Biochemistry, University of Bristol, Bristol, United Kingdom; European Molecular Biology Laboratory, Grenoble, France; Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, Unité mixte de Recherche, Grenoble, France. Electronic address:

Membrane proteins constitute about one third of the proteome. The ubiquitous Sec machinery facilitates protein movement across or integration of proteins into the cytoplasmic membrane. In Escherichia coli post- and co-translational targeting pathways converge at the protein-conducting channel, consisting of a central pore, SecYEG, which can recruit accessory domains SecDF-YajC and YidC, to form the holotranslocon (HTL) supercomplex.

View Article and Find Full Text PDF

Introduction: Influenza viruses are a threat to human health. There are presently only two methods for treating influenza: vaccines, which require yearly updates, and two classes of antivirals that suffer with the problem of resistance by current human influenza viruses; this is especially the case with amantadine and rimantadine. Consequently, there is an urgent need for the development of new antivirals with new mechanisms of action.

View Article and Find Full Text PDF

Eukaryotic elongation factor eEF1A transits between the GTP- and GDP-bound conformations during the ribosomal polypeptide chain elongation. eEF1A*GTP establishes a complex with the aminoacyl-tRNA in the A site of the 80S ribosome. Correct codon-anticodon recognition triggers GTP hydrolysis, with subsequent dissociation of eEF1A*GDP from the ribosome.

View Article and Find Full Text PDF

A gatekeeper helix determines the substrate specificity of Sjögren-Larsson Syndrome enzyme fatty aldehyde dehydrogenase.

Nat Commun

July 2014

1] European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France [2] Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France [3].

Mutations in the gene coding for membrane-bound fatty aldehyde dehydrogenase (FALDH) lead to toxic accumulation of lipid species and development of the Sjögren-Larsson Syndrome (SLS), a rare disorder characterized by skin defects and mental retardation. Here, we present the crystallographic structure of human FALDH, the first model of a membrane-associated aldehyde dehydrogenase. The dimeric FALDH displays a previously unrecognized element in its C-terminal region, a 'gatekeeper' helix, which extends over the adjacent subunit, controlling the access to the substrate cavity and helping orientate both substrate cavities towards the membrane surface for efficient substrate transit between membranes and catalytic site.

View Article and Find Full Text PDF

The fidelity of protein synthesis depends on the capacity of aminoacyl-tRNA synthetases (AARSs) to couple only cognate amino acid-tRNA pairs. If amino acid selectivity is compromised, fidelity can be ensured by an inherent AARS editing activity that hydrolyses mischarged tRNAs. Here, we show that the editing activity of Escherichia coli leucyl-tRNA synthetase (EcLeuRS) is not required to prevent incorrect isoleucine incorporation.

View Article and Find Full Text PDF

The Piwi-interacting RNA (piRNA)-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of Drosophila melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation.

View Article and Find Full Text PDF

The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs.

RNA

June 2014

European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble, France Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 38042 Grenoble, France.

Piwi-interacting RNAs (piRNAs) guide Piwi Argonautes to suppress transposon activity in animal gonads. Known piRNA populations are extremely complex, with millions of individual sequences present in a single organism. Despite this complexity, specific Piwi proteins incorporate piRNAs with distinct nucleotide- and transposon strand-biases (antisense or sense) of unknown origin.

View Article and Find Full Text PDF

Structural and biophysical characterization of murine rif1 C terminus reveals high specificity for DNA cruciform structures.

J Biol Chem

May 2014

From the European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 France, the Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 France,

Mammalian Rif1 is a key regulator of DNA replication timing, double-stranded DNA break repair, and replication fork restart. Dissecting the molecular functions of Rif1 is essential to understand how it regulates such diverse processes. However, Rif1 is a large protein that lacks well defined functional domains and is predicted to be largely intrinsically disordered; these features have hampered recombinant expression of Rif1 and subsequent functional characterization.

View Article and Find Full Text PDF

Capsid proteins of enveloped viruses as antiviral drug targets.

Curr Opin Virol

April 2014

University of Grenoble Alpes-EMBL-CNRS, Unit for Virus Host-Cell Interactions, 6 rue Jules Horowitz, 38042, France.

Viral proteins have enabled the design of selective and efficacious treatments for viral diseases. While focus in this area has been on viral enzymes, it appears that multifunctional viral proteins may be even more susceptible to small molecule interference. As exemplified by HIV capsid, small molecule inhibitors can bind to multiple binding sites on the capsid protein and induce or prevent protein interactions and conformational changes.

View Article and Find Full Text PDF

Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2.

Nucleic Acids Res

February 2014

European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France, Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, UMI 3265, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France and University of Cologne, Institute for Genetics, Zuelpicher Street 47a, 50674 Cologne, Germany.

Nonsense-mediated decay (NMD) is a eukaryotic quality control pathway, involving conserved proteins UPF1, UPF2 and UPF3b, which detects and degrades mRNAs with premature stop codons. Human UPF2 comprises three tandem MIF4G domains and a C-terminal UPF1 binding region. MIF4G-3 binds UPF3b, but the specific functions of MIF4G-1 and MIF4G-2 are unknown.

View Article and Find Full Text PDF