29 results match your criteria: "University of Graz Heinrichstrasse 28[Affiliation]"

Medium-sized 5- and 6-membered ring lactams are molecules with remarkable stability, in contrast to smaller β-lactams. As monomers, they grant access to nylon-4 and nylon-5, which are alternative polyamides to widespread caprolactam-based nylon-6. Chemical hydrolysis of monocyclic γ- and δ-lactams to the corresponding amino acids requires harsh reaction conditions and up to now, no mild (enzymatic) protocol has been reported.

View Article and Find Full Text PDF

Although optical pure amino alcohols are in high demand due to their widespread applicability, they still remain challenging to synthesize, since commonly elaborated protection strategies are required. Here, a multi-enzymatic methodology is presented that circumvents this obstacle furnishing enantioenriched 1,3-amino alcohols out of commodity chemicals. A Type I aldolase forged the carbon backbone with an enantioenriched aldol motif, which was subsequently subjected to enzymatic transamination.

View Article and Find Full Text PDF

Biocatalysis has gained increasing importance as an eco-friendly alternative for the production of bulk and fine chemicals. Within this paradigm, Baeyer Villiger monoxygenases (BVMOs) serve as enzymatic catalysts that provide a safe and sustainable route to the conventional synthesis of lactones, such as caprolactone, which is employed for the production of polycaprolactone (PCL), a biocompatible polymer for medicinal applications. In this work, we present a three-step, semi-continuous production of PCL using an entirely biocatalytic process, highlighting the merits of continuous manufacturing for enhancing biocatalysis.

View Article and Find Full Text PDF

In this work, we have described a family of bio-based polycarbonates (PC-MBC) based on the unique lignin-derived aliphatic diol 4,4'-methylenebiscyclohexanol (MBC) that was sustainably sourced from lignin oxidation mixture. The detailed structure analysis of these polycarbonates has been confirmed by a series of 2D NMR (HSQC and COSY) characterizations. Depending on the stereoisomerism of MBC, the PC-MBC displayed a wide achievable range of 117-174 °C and high of >310 °C by variation of the ratio of the stereoisomers of MBC, offering great substitution perspectives towards a bisphenol-containing polycarbonates.

View Article and Find Full Text PDF

The complete utilization of all lignin depolymerization streams obtained from the reductive catalytic fractionation (RCF) of woody biomass into high-value-added compounds is a timely and challenging objective. Here, we present a catalytic methodology to transform beech lignin-derived dimers and oligomers (DO) into well-defined 1,4-cyclohexanediol and 1,4-cyclohexanediamine. The latter two compounds have vast industrial relevance as monomers for polymer synthesis as well as pharmaceutical building blocks.

View Article and Find Full Text PDF

Primary amines are crucially important building blocks for the synthesis of a wide range of industrially relevant products. Our comprehensive catalytic strategy presented here allows diverse primary amines from lignocellulosic biomass to be sourced in a straightforward manner and with minimal purification effort. The core of the methodology is the efficient RANEY® Ni-catalyzed hydrogen-borrowing amination (with ammonia) of the alcohol intermediates, namely alkyl-phenol derivatives as well as aliphatic alcohols, obtained through the two-stage process Hereby the entails the copper-doped porous metal oxide (Cu20PMO) catalyzed reductive catalytic fractionation () of pine lignocellulose into a crude bio-oil, rich in dihydroconiferyl alcohol (), which could be converted into dihydroconiferyl amine () in high selectivity using ammonia gas, by applying our selective amination protocol.

View Article and Find Full Text PDF

Many biocatalytic redox reactions depend on the cofactor NAD(P)H, which may be provided by dedicated recycling systems. Exploiting light and water for NADPH-regeneration as it is performed, e.g.

View Article and Find Full Text PDF

Water as a monomer: synthesis of an aliphatic polyethersulfone from divinyl sulfone and water.

Chem Sci

June 2022

Christian Doppler Laboratory for Organocatalysis in Polymerization Stremayrgasse 9 8010 Graz Austria

Using water as a monomer in polymerization reactions presents a unique and exquisite strategy towards more sustainable chemistry. Herein, the feasibility thereof is demonstrated by the introduction of the oxa-Michael polyaddition of water and divinyl sulfone. Upon nucleophilic or base catalysis, the corresponding aliphatic polyethersulfone is obtained in an interfacial polymerization at room temperature in high yield (>97%) within an hour.

View Article and Find Full Text PDF

Lignin is the largest natural source of functionalized aromatics on the planet, therefore exploiting its inherent structural features for the synthesis of aromatic products is a timely and ambitious goal. While the recently developed lignin depolymerization strategies gave rise to well-defined aromatic platform chemicals, the diversification of these structures, especially toward high-end applications is still poorly addressed. Molecular motors and switches have found widespread application in many important areas such as targeted drug delivery systems, responsive coatings for self-healing surfaces, paints and resins or muscles for soft robotics.

View Article and Find Full Text PDF

Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts.

View Article and Find Full Text PDF

Regioselective reactions represent a significant challenge for organic chemistry. Here the regioselective methylation of a single hydroxy group of 4-substituted catechols was investigated employing the cobalamin-dependent methyltransferase from . Catechols substituted in position four were methylated either in - or -position to the substituent depending whether the substituent was polar or apolar.

View Article and Find Full Text PDF

Adsorption of nitrogen-containing compounds on hydroxylated α-quartz surfaces.

RSC Adv

November 2019

Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, Jackson State University 1400 Lynch Street, P. O. Box 17910 Jackson MS 39217 USA.

Adsorption energies of various nitrogen-containing compounds (specifically, 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAn), and 3-nitro-1,2,4-triazole-5-one (NTO)) on the hydroxylated (001) and (100) α-quartz surfaces are computed. Different density functionals are utilized and both periodic as well as cluster approaches are applied. From the adsorption energies, partition coefficients on the considered α-quartz surfaces are derived.

View Article and Find Full Text PDF

The Beckmann rearrangement of oximes to amides typically requires strong acids or highly reactive, hazardous electrophiles and/or elevated temperatures to proceed. A very attractive alternative is the in situ generation of Vilsmeier-Haack reagents, by means of photoredox catalysis, as promoters for the thermal Beckmann rearrangement. Investigation of the reaction parameters for this light-induced method using a one-pot strategy has shown that the reaction is limited by the different temperatures required for each of the two sequential steps.

View Article and Find Full Text PDF

The utilization of carbon dioxide as a C-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,β-unsaturated (acrylic) acid derivatives.

View Article and Find Full Text PDF

Fluorination and trifluoromethylation are indispensable tools in the preparation of modern pharmaceuticals and APIs. Herein we present a concept for the introduction of a trifluoromethyl group into unprotected phenols employing catalytic copper(I) iodide and hydroquinone, BuOOH, and the Langlois' reagent. The method proceeds under mild conditions and exhibits an extended substrate scope compared to the biocatalytic trifluoromethylation using laccase from .

View Article and Find Full Text PDF

Artificial cascade reactions involving biocatalysts have demonstrated a tremendous potential during the recent years. This review just focuses on selected examples of the last year and putting them into context to a previously published suggestion for classification. Subdividing the cascades according to the number of catalysts in the linear sequence, and classifying whether the steps are performed simultaneous or in a sequential fashion as well as whether the reaction sequence is performed or allows to organise the concepts.

View Article and Find Full Text PDF

Fungal ferulic acid decarboxylases (FDCs) belong to the UbiD-family of enzymes and catalyse the reversible (de)carboxylation of cinnamic acid derivatives through the use of a prenylated flavin cofactor. The latter is synthesised by the flavin prenyltransferase UbiX. Herein, we demonstrate the applicability of FDC/UbiX expressing cells for both isolated enzyme and whole-cell biocatalysis.

View Article and Find Full Text PDF

Undesired product hydrolysis along with large amounts of waste in form of inorganic monophosphate by-product are the main obstacles associated with the use of pyrophosphate in the phosphatase-catalyzed synthesis of phosphate monoesters on large scale. In order to overcome both limitations, we screened a broad range of natural and synthetic organic phosphate donors with several enzymes on a broad variety of hydroxyl-compounds. Among them, acetyl phosphate delivered stable product levels and high phospho-transfer efficiency at the lower functional pH-limit, which translated into excellent productivity.

View Article and Find Full Text PDF

An easy to use method combining the selectivity of metal chelate affinity binding with strong covalent linking was developed for immobilization of non-specific acid phosphatases bearing a His-tag from crude cell lysate. Silica nanoparticles were grafted with aminopropyl functions which were partially transformed further with EDTA dianhydride to chelators. The heterofunctionalized nanoparticles charged with Ni as the most appropriate metal ion were applied as support.

View Article and Find Full Text PDF

The biocatalytic asymmetric disproportionation of aldehydes catalyzed by horse liver alcohol dehydrogenase (HLADH) was assessed in detail on a series of racemic 2-arylpropanals. Statistical optimization by means of design of experiments (DoE) allowed the identification of critical interdependencies between several reaction parameters and revealed a specific experimental window for reaching an 'optimal compromise' in the reaction outcome. The biocatalytic system could be applied to a variety of 2-arylpropanals and granted access in a redox-neutral manner to enantioenriched ()-profens and profenols following a parallel interconnected dynamic asymmetric transformation (PIDAT).

View Article and Find Full Text PDF

Weak, intermolecular interactions in amine dimers were studied by using the combination of a dispersionless density functional and a function that describes the dispersion contribution to the interaction energy. The validity of this method was shown by comparison of structural and energetic properties with data obtained with a conventional density functional and the coupled cluster method. The stability of amine dimers was shown to depend on the size, the shape, and the relative orientation of the alkyl substituents, and it was shown that the stabilization energy for large substituents is dominated by dispersion interactions.

View Article and Find Full Text PDF

The catalytic promiscuity of a ferulic acid decarboxylase from sp. (FDC_s) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C- and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% . The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions.

View Article and Find Full Text PDF

We report the use of bifunctional starting materials (ketoacids) in a diastereoselective Passerini three-center-two-component reaction. Study of the reaction scope revealed the required structural features for stereoselectivity in the isocyanide addition. In this system, an interesting isomerization of the primary Passerini product - the α-carboxamido lactone - into an atypical product, an α-hydroxy imide, was found to occur under acidic conditions.

View Article and Find Full Text PDF

The Industrial Age of Biocatalytic Transamination.

European J Org Chem

November 2015

Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz NAWI Graz Heinrichstrasse 28, 8010 Graz, Austria E-mail: http://biocatalysis.uni-graz.at.

During the last decade the use of ω-transaminases has been identified as a very powerful method for the preparation of optically pure amines from the corresponding ketones. Their immense potential for the preparation of chiral amines, together with their ease of use in combination with existing biocatalytic methods, have made these biocatalysts a competitor to any chemical methodology for (asymmetric) amination. An increasing number of examples, especially from industry, shows that this biocatalytic technology outmaneuvers existing chemical processes by its simple and flexible nature.

View Article and Find Full Text PDF

Amination of non-activated aliphatic fatty alcohols to the corresponding primary amines was achieved through a five-enzyme cascade reaction by coupling a long-chain alcohol oxidase from (LCAO_Af) with a ω-transaminase from (ω-TA_Cv). The alcohol was oxidized at the expense of molecular oxygen to yield the corresponding aldehyde, which was subsequently aminated by the PLP-dependent ω-TA to yield the final primary amine product. The overall cascade was optimized with respect to pH, O pressure, substrate concentration, decomposition of HO (derived from alcohol oxidation), NADH regeneration, and biocatalyst ratio.

View Article and Find Full Text PDF