8 results match your criteria: "University of Gothenburg 405 30 Göteborg Sweden leif.eriksson@chem.gu.se.[Affiliation]"

Selectivity analysis of diaminopyrimidine-based inhibitors of MTHFD1, MTHFD2 and MTHFD2L.

Sci Rep

September 2024

Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Göteborg, Sweden.

The mitochondrial enzyme methylenetetrahydrofolate dehydrogenase (MTHFD2) is involved in purine and thymidine synthesis via 1C metabolism. MTHFD2 is exclusively overexpressed in cancer cells but absent in most healthy adult human tissues. However, the two close homologs of MTHFD2 known as MTHFD1 and MTHFD2L are expressed in healthy adult human tissues and share a great structural resemblance to MTHFD2 with 54% and 89% sequence similarity, respectively.

View Article and Find Full Text PDF

The flavonoid Quercetin (Qe) was identified as an activator of Inositol-requiring enzyme 1 (IRE1) in S. cerevisiae (scIre1p), but its impact on human IRE1 (hIRE1) remains controversial due to the absence of a conserved Qe binding site. We have explored the binding modes and effect of Qe on both scIre1p and hIRE1 dimers using in silico and in vitro approaches.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is growing rapidly among the elderly population around the world. Studies show that a lack of acetylcholine and butyrylcholine due to the overexpression of enzymes Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) may lead to reduced communication between neuron cells. As a result, seeking novel inhibitors targeting these enzymes might be vital for the future treatment of AD.

View Article and Find Full Text PDF

Inositol-Requiring Enzyme 1α (IRE1α; hereafter IRE1) is a transmembrane kinase/ribonuclease protein related with the unfolded protein response (UPR) signaling. Experimental evidence suggests that IRE1 forms several three dimensional (3D) structural variants: dimers, tetramers and higher order oligomers, where each structural variant can contain different IRE1 conformers in different arrangements. For example, studies have shown that two sets of IRE1 dimers exist; a face-to-face dimer and a back-to-back dimer, with the latter considered the important unit for UPR signaling propagation.

View Article and Find Full Text PDF

The selectivity of the ligand MKC9989, as inhibitor of the Inositol-Requiring Enzyme 1α (IRE1α) transmembrane kinase/ribonuclease protein, towards the residue K907 in the context of Schiff base formation, has been investigated by employing an array of techniques including Multi-Conformation Continuum Electrostatics (MCCE) simulations, Quantum Mechanics/Molecular Mechanics (QM/MM) calculations, covalent docking, and Molecular Dynamics (MD) simulations. According to the MCCE results, K907 displays the lowest p value among all 23 lysine residues in IRE1α. The MMCE simulations also indicate a critical interaction between K907 and D885 within the hydrophobic pocket which increases significantly at low protein dielectric constants.

View Article and Find Full Text PDF

Protein kinases are crucial drug targets in cancer therapy. Kinase inhibitors are promiscuous in nature due to the highly conserved nature of the kinase ATP binding pockets. PERK has emerged as a potential therapeutic target in cancer.

View Article and Find Full Text PDF

IRE1 is an endoplasmic reticulum (ER) bound transmembrane bifunctional kinase and endoribonuclease protein crucial for the unfolded protein response (UPR) signaling pathway. Upon ER stress, IRE1 homodimerizes, oligomerizes and autophosphorylates resulting in endoribonuclease activity responsible for excision of a 26 nucleotide intron from the X-box binding protein 1 (XBP1) mRNA. This unique splicing mechanism results in activation of the XBP1s transcription factor to specifically restore ER stress.

View Article and Find Full Text PDF

Mutations in the rearranged during transfection (RET) tyrosine kinase gene leading to gain or loss of function have been associated with the development of several human cancers and Hirschsprung's disease (HSCR). However, to what extent these mutations affect individual bio-molecular functions remains unclear. In this article, the functionally significant mutations in the RET CLD1-4 calcium-binding site which lead to HSCR, and depletion of calcium ions in the RET CLD1-4 calcium binding site, were investigated by molecular dynamics simulations--to understand the mechanistic action of the mutations or loss of calcium ions in altering the protein kinase structure, dynamics, and stability.

View Article and Find Full Text PDF