10 results match your criteria: "University of Florence and INSTM[Affiliation]"

Radical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO)], where Ln = Eu or Lu and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu and the radical ( = +19.

View Article and Find Full Text PDF

Defect-Engineering by Solvent Mediated Mild Oxidation as a Tool to Induce Exchange Bias in Metal Doped Ferrites.

Small Methods

November 2023

Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino (FI), I-50019, Italy.

The crystal site occupancy of different divalent ions and the induction of lattice defects represent an additional tool for modifying the intrinsic magnetic properties of spinel ferrites nanoparticles. Here, the relevance of the lattice defects is demonstrated in the appearance of exchange-bias and in the improvement of the magnetic properties of doped ferrites of 20 nm, obtained from the mild oxidation of core@shell (wüstite@ferrite) nanoparticles. Three types of nanoparticles (Fe0 O@Fe O , Co Fe O@Co Fe O and Ni Co Fe O@Ni Co Fe O ) are oxidized.

View Article and Find Full Text PDF

In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by thermal decomposition, which were further subjected to solvent-mediated annealing at variable temperatures between 150 and 320 °C in an inert atmosphere. The postsynthesis treatment produces a 50% increase of the coercive field, without affecting neither the remanence ratio nor the spontaneous magnetization.

View Article and Find Full Text PDF

Nanometric core@shell wüstite@ferrite (Fe O@Fe O ) has been extensively studied because of the emergence of exchange bias phenomena. Since their actual implementation in modern technologies is hampered by the low temperature at which bias is operating, the critical issue to be solved is to obtain exchange-coupled antiferromagnetic@ferrimagnetic nanoparticles (NPs) with ordering temperature close to 300 K by replacing the divalent iron with other transition-metal ions. Here, the effect of the combined substitution of Fe  with Co  and Ni  on the crystal structure and magnetic properties is studied.

View Article and Find Full Text PDF

A cobalt(II)-based spin triangle shows a significant spin-electric coupling. [Co (pytag)(py) Cl ]ClO ⋅3 py crystallizes in the acentric monoclinic space group P2 . The intra-triangle antiferromagnetic interaction, of the order of ca.

View Article and Find Full Text PDF

A series of isomorphous mononuclear complexes of Ln(III) ions comprising one stable tripodal oxazolidine nitroxyl radical were obtained in acetonitrile media starting from nitrates. The compounds, [LnRad(NO)] (Ln = Gd, Tb, Dy, Tm, Y; Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl), have a molecular structure. Their coordination polyhedron, LnON, can be described as a tricapped trigonal prism with symmetry not far from .

View Article and Find Full Text PDF

Herein, we report on investigations of magnetic and spectroscopic properties of three heterobimetallic Fe(ii)-Co(ii) coordination compounds based on the tetracoordinate {CoP2X2} core encapsulated by dppf metalloligand, where X = Cl (1), Br (2), I (3), dppf = 1,1'-ferrocenediyl -bis(diphenylphosphine). The analysis of static magnetic data has revealed the presence of axial magnetic anisotropy in compounds (1) and (2) and this was further confirmed by high-frequency electron spin resonance (HF-ESR) spectroscopy. Dynamic magnetic data confirmed that (1) and (2) behave as field-induced Single-Ion Magnets (SIMs).

View Article and Find Full Text PDF

The development of reproducible protocols to synthesize hard/soft nano-heterostructures (NHSs) with tailored magnetic properties is a crucial step to define their potential application in a variety of technological areas. Thermal decomposition has proved to be an effective tool to prepare such systems, but it has been scarcely used so far for the synthesis of Co-based metal/ferrite NHSs, despite their intriguing physical properties. We found a new approach to prepare this kind of nanomaterial based on a simple one-pot thermal decomposition reaction of metal-oleate precursors in the high boiling solvent docosane.

View Article and Find Full Text PDF

The spin crossover (SCO) efficiency of [Fe(bpz)(phen)] (where bpz = bis(pyrazol-1-yl)borohydride and phen = 9,10-phenantroline) molecules deposited on gold substrates was investigated by means of synchrotron Mössbauer spectroscopy. The spin transition was driven thermally, or light induced via the LIESST (light induced excited spin-state trapping) effect. Both sets of measurements show that, once deposited on a gold substrate, the efficiency of the SCO mechanism is modified with respect to molecules in the bulk phase.

View Article and Find Full Text PDF

Characterization of magnetic nanoparticles from Magnetospirillum Gryphiswaldense as potential theranostics tools.

Contrast Media Mol Imaging

December 2016

Department of Neurological and Movement Science and INSTM, University of Verona, Verona, I-37134, Italy.

We investigated the theranostic properties of magnetosomes (MNs) extracted from magnetotactic bacteria, promising for nanomedicine applications. Besides a physico-chemical characterization, their potentiality as mediators for magnetic fluid hyperthermia and contrast agents for magnetic resonance imaging, both in vitro and in vivo, are here singled out. The MNs, constituted by magnetite nanocrystals arranged in chains, show a superparamagnetic behaviour and a clear evidence of Verwey transition, as signature of magnetite presence.

View Article and Find Full Text PDF