8 results match your criteria: "University of Dundee School of Life Sciences[Affiliation]"

Background: Dictyostelia are soil amoebas that aggregate to form fruiting bodies with spores and stalk cells in response to starvation. Where known, species across the dictyostelid phylogeny use secreted cAMP, detected by cAMP receptors (cARs) to induce the differentiation of spores and to organize fruiting body construction. However, recent deletion of the single of ) left both its fruiting bodies and spores intact.

View Article and Find Full Text PDF

Interplay between phytohormone signalling pathways in plant defence - other than salicylic acid and jasmonic acid.

Essays Biochem

September 2022

Division of Plant Sciences, James Hutton Institute, University of Dundee School of Life Sciences, Errol Rd, Invergowrie, Dundee DD2 5DA, U.K.

Phytohormones are essential for all aspects of plant growth, development, and immunity; however, it is the interplay between phytohormones, as they dynamically change during these processes, that is key to this regulation. Hormones have traditionally been split into two groups: growth-promoting and stress-related. Here, we will discuss and show that all hormones play a role in plant defence, regardless of current designation.

View Article and Find Full Text PDF

In Vivo Models for the Evaluation of Antisense Oligonucleotides in Skin.

Methods Mol Biol

March 2022

Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Here, we describe an in vivo model in which antisense oligonucleotides were preclinically evaluated in reconstituted patient and healthy control skin. The aim was to investigate the effect of antisense oligonucleotides upon local or systemic administration. This allows for clinically relevant evaluation of antisense oligonucleotides in an in vivo setting.

View Article and Find Full Text PDF

Blue-light (BL) phototropin receptors (phot1 and phot2) regulate plant growth by activating NPH3/RPT2-like (NRL) family members. Little is known about roles for BL and phots in regulating plant immunity. We showed previously that Phytophthora infestans RXLR effector Pi02860 targets potato (St)NRL1, promoting its ability to enhance susceptibility by facilitating proteasome-mediated degradation of the immune regulator StSWAP70.

View Article and Find Full Text PDF

Keratin mutations and intestinal pathology.

J Pathol

November 2004

Cancer Research UK Cell Structure Research Group, Division of Cell and Developmental Biology, University of Dundee School of Life Sciences, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK.

Whilst the importance of mutations in a wide range of keratins in skin fragility disorders is now well established, there is much less evidence for simple epithelial keratin involvement in disease. Some simple epithelial keratin mutations have been reported in liver cirrhosis and pancreatitis patients, and recently mutations in the simple epithelial keratin K8 were identified in a group of patients with inflammatory bowel disease (Crohn disease or ulcerative colitis). In comparison with the mutations seen in epidermal keratins, these simple epithelial mutations would be predicted to have mild consequences, although analysis shows that they do have a distinct effect.

View Article and Find Full Text PDF

Keratins and skin disorders.

J Pathol

November 2004

Cancer Research UK Cell Structure Research Group, Division of Cell and Developmental Biology, University of Dundee School of Life Sciences, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK.

The association of keratin mutations with genetic skin fragility disorders is now one of the best-established examples of cytoskeleton disorders. It has served as a paradigm for many other diseases and has been highly informative for the study of intermediate filaments and their associated components, in helping to understand the functions of this large family of structural proteins. The keratin diseases have shown unequivocally that, at least in the case of the epidermal keratins, a major function of intermediate filaments is to provide physical resilience for epithelial cells.

View Article and Find Full Text PDF

The intermediate filament cytoskeleton is thought to confer physical resilience on tissue cells, on the basis of extrapolations from the phenotype of cell fragility that results from mutations in skin keratins. There is a need for functional cell assays in which the impact of stress on intermediate filaments can be induced and analyzed. Using osmotic shock, we have induced cytoskeleton changes that suggest protective functions for actin and intermediate filament systems.

View Article and Find Full Text PDF