12 results match your criteria: "University of Copenhagen 2100[Affiliation]"

Synchrotron X-ray techniques are essential for studies of the intrinsic relationship between synthesis, structure, and properties of materials. Modern synchrotrons can produce up to 1 petabyte of data per day. Such amounts of data can speed up materials development, but also comes with a staggering growth in workload, as the data generated must be stored and analyzed.

View Article and Find Full Text PDF

The rapid growth of materials chemistry data, driven by advancements in large-scale radiation facilities as well as laboratory instruments, has outpaced conventional data analysis and modelling methods, which can require enormous manual effort. To address this bottleneck, we investigate the application of supervised and unsupervised machine learning (ML) techniques for scattering and spectroscopy data analysis in materials chemistry research. Our perspective focuses on ML applications in powder diffraction (PD), pair distribution function (PDF), small-angle scattering (SAS), inelastic neutron scattering (INS), and X-ray absorption spectroscopy (XAS) data, but the lessons that we learn are generally applicable across materials chemistry.

View Article and Find Full Text PDF

Material nucleation processes are poorly understood; nevertheless, an atomistic understanding of material formation would aid in the design of material synthesis methods. Here, we apply X-ray total scattering experiments with pair distribution function (PDF) analysis to study the hydrothermal synthesis of wolframite-type MWO (M : Mn, Fe, Co, Ni). The data obtained allow the mapping of the material formation pathway in detail.

View Article and Find Full Text PDF

Structure solution of nanostructured materials that have limited long-range order remains a bottleneck in materials development. We present a deep learning algorithm, DeepStruc, that can solve a simple monometallic nanoparticle structure directly from a Pair Distribution Function (PDF) obtained from total scattering data by using a conditional variational autoencoder. We first apply DeepStruc to PDFs from seven different structure types of monometallic nanoparticles, and show that structures can be solved from both simulated and experimental PDFs, including PDFs from nanoparticles that are not present in the training distribution.

View Article and Find Full Text PDF

Halide recognition by supramolecular receptors and coordination complexes in water is a long-standing challenge. In this work, we report chloride binding in water and in competing media by pre-organised binuclear kinetically inert lanthanide complexes, bridged by flexible -(CH)- and -(CH)- spacers, forming [Ln(DO3A)C-2] and [Ln(DO3A)C-3], respectively. These hydrophilic, neutral lanthanide coordination complexes are shown to bind chloride with apparent association constants of up to 10 M in water and in buffered systems.

View Article and Find Full Text PDF

We compare the adiabatic quantized charge pumping performed in two types of InAs nanowire double quantum dots (DQDs), either with tunnel barriers defined by closely spaced narrow bottom gates, or by well-separated side gates. In the device with an array of bottom gates of 100 nm pitch and 10 μm lengths, the pump current is quantized only up to frequencies of a few MHz due to the strong capacitive coupling between the bottom gates. In contrast, in devices with well-separated side gates with reduced mutual gate capacitances, we find well-defined pump currents up to 30 MHz.

View Article and Find Full Text PDF

The Earth BioGenome Project 2020: Starting the clock.

Proc Natl Acad Sci U S A

January 2022

State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences 650223 Yunnan, China.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding what makes alien species successful can help predict future invasions.
  • Researchers identified three key dimensions of invasiveness: local abundance, geographic range size, and habitat breadth, analyzing data from over one million vegetation plots across Europe.
  • The study found that earlier introductions and certain traits, especially from acquisitive growth strategists, contributed to higher success rates in invasiveness, while also highlighting unique patterns in specific habitats.
View Article and Find Full Text PDF

The development of new functional materials builds on an understanding of the intricate relationship between material structure and properties, and structural characterization is a crucial part of materials chemistry. However, elucidating the atomic structure of nanomaterials remains a challenge using conventional diffraction techniques due to the lack of long-range atomic order. Over the past decade, Pair Distribution Function (PDF) analysis of X-ray or neutron total scattering data has become a mature and well-established method capable of giving insight into the atomic structure in nanomaterials.

View Article and Find Full Text PDF

The tumor-suppressive transcription factor p53 is a master regulator of stress responses. In non-stressed conditions, p53 is maintained at low levels by the ubiquitin ligase Mdm2 and its binding partner Mdmx. Mdmx depletion leads to a biphasic p53 response, with an initial post-mitotic pulse followed by oscillations.

View Article and Find Full Text PDF

In the past decade, several developments have expanded the chemical toolbox for astatination and the preparation of At-labeled radiopharmaceuticals. However, there is still a need for advanced methods for the synthesis of astatinated (bio)molecules to address challenges such as limited in vivo stability. Herein, we report the development of multifunctional At-labeled reagents that can be prepared by applying a modular and versatile click approach for rapid assembly.

View Article and Find Full Text PDF

Poor patient adherence is often the reason for suboptimal blood pressure control. Electronic monitoring is one method of assessing adherence. The aim was to systematically review the literature on electronic monitoring of patient adherence to self-administered oral antihypertensive medications.

View Article and Find Full Text PDF