7 results match your criteria: "University of Connecticut Health Center Farmington CT[Affiliation]"

Low-cost sensors enable finer-scale spatiotemporal measurements within the existing methane (CH) monitoring infrastructure and could help cities mitigate CH emissions to meet their climate goals. While initial studies of low-cost CH sensors have shown potential for effective CH measurement at ambient concentrations, sensor deployment remains limited due to questions about interferences and calibration across environments and seasons. This study evaluates sensor performance across seasons with specific attention paid to the sensor's understudied carbon monoxide (CO) interferences and environmental dependencies through long-term ambient co-location in an urban environment.

View Article and Find Full Text PDF

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths worldwide. However, most SARS-CoV-2 detection methods depend on time-consuming sample preparation and large detection instruments. Herein, a method employing nonbleeding pH paper to achieve both RNA extraction and visual isothermal amplification is proposed, enabling rapid, instrument-free SARS-CoV-2 detection.

View Article and Find Full Text PDF

Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alteration is a hallmark of cancer, with the deficiency in one DDR capability often compensated by a dependency on alternative pathways endowing cancer cells with survival and growth advantage. Targeting these DDR pathways has provided multiple opportunities for the development of cancer therapies.

View Article and Find Full Text PDF

The main mammalian heart pacemakers are spindle-shaped cells compressed into tangles within protective layers of collagen in the sino-atrial node (SAN). Two cell types, "dark" and "light," differ on their high or low content of intermediate filaments, but share scarcity of myofibrils and a high content of glycogen. Sarcoplasmic reticulum (SR) is scarce.

View Article and Find Full Text PDF

Mutations in the liver glycogen phosphorylase () gene are associated with the diagnosis of glycogen storage disease type VI (GSD-VI). To understand the pathogenesis of GSD-VI, we generated a mouse model with deficiency ( ). mice exhibit hepatomegaly, excessive hepatic glycogen accumulation, and low hepatic free glucose along with lower fasting blood glucose levels and elevated blood ketone bodies.

View Article and Find Full Text PDF

Deep ultraviolet (DUV)-treatment is an efficient method for the removal of high-energy-barrier polymeric or aliphatic organic ligands from nanomaterials. Regardless of morphology and material, the treatment can be used for nanoparticles, nanowires, and even nanosheets. The high-energy photon irradiation from low-pressure mercury lamps or radio frequency (RF) discharge excimer lamps could enhance the electrical conductivity of various nanomaterial matrixes, such as Ag nanoparticles, BiSe nanosheets, and Ag nanowires, with the aliphatic alkyl chained ligand (oleylamine; OAm) and polymeric ligand (polyvinyl pyrrolidone; PVP) as surfactants.

View Article and Find Full Text PDF

Progesterone (P4) is synthesized in the ovary and acts directly on granulosa cells of developing ovarian follicles to suppress their rate of mitosis and apoptosis. Granulosa cells do not express nuclear progesterone receptor (PGR) but rather progesterone receptor membrane component-1 (PGRMC1). PGRMC1 binds P4 and mediates P4's actions, as evidenced by PGRMC1 siRNA studies.

View Article and Find Full Text PDF