4 results match your criteria: "University of Cincinnati College of Medicine and Cincinnati Children's Hospital Research Foundation[Affiliation]"

An intestine-specific gene regulatory region was previously identified near the second exon of the human adenosine deaminase (ADA) gene. In mammalian intestine, ADA is expressed at high levels only along the villi of the duodenal epithelium, principally if not exclusively in enterocytes. Within the ADA intestinal regulatory region, a potent duodenum-specific enhancer was identified that controls this pattern of expression.

View Article and Find Full Text PDF

Epithelial lineages of the small intestine have unique patterns of GATA expression.

J Mol Histol

February 2005

Department of Pediatrics, Division of Developmental Biology, College of Medicine and Cincinnati Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA.

The ability of the GATA family of factors to interact with numerous other factors, co-factors, and repressors suggests that they may play key roles in tissues and cells where they are expressed. Adult mouse small intestine has been shown to express GATA-4, GATA-5, and GATA-6, where they have been implicated in the activation of a number of intestinal genes. Determination of which GATA factor(s) are involved in a specific function in tissues expressing multiple family members has proven difficult.

View Article and Find Full Text PDF

In mammalian intestine, adenosine deaminase (ADA) is expressed at high levels only along the villi of the duodenal epithelium. A duodenum-specific enhancer identified in the second intron of the human ADA gene controls this pattern of expression. This enhancer faithfully recapitulates this expression pattern in transgenic mice, when included in CAT reporter gene constructions.

View Article and Find Full Text PDF

The purine metabolic gene adenosine deaminase (ADA) is expressed at high levels in a well-defined spatiotemporal pattern in the villous epithelium of proximal small intestine. A duodenum-specific enhancer module responsible for this expression pattern has been identified in the second intron of the human ADA gene. It has previously been shown that binding of the factor PDX-1 is essential for function of this enhancer.

View Article and Find Full Text PDF