32 results match your criteria: "University of Chemical Technology Prague[Affiliation]"

The structure-directing "key-to-lock" interaction of double σ-(I)-hole donating iodonium cations with the O-flanked pseudo-lacune rims of [β-MoO] gives halogen-bonded iodonium-beta-octamolybate supramolecular associates. In the occurrence of their tetragonal pyramidal motifs, deep and broad σ-(I)-holes of a cation recognize the molybdate backbone, which provides an electronic pool localized around the two lacunae. The halogen-bonded I⋯O linkages in the structures were thoroughly studied computationally and classified as two-center, three-center bifurcated, and unconventional "orthogonal" I⋯O halogen bonds.

View Article and Find Full Text PDF

Capillary condensation between nonparallel walls.

Phys Rev E

May 2024

Department of Physical Chemistry, University of Chemical Technology Prague, 166 28 Prague, Czech Republic.

We study the condensation of fluids confined by a pair of nonparallel plates of finite height H. We show that such a system experiences two types of condensation, termed single and double pinning, which can be characterized by one (single-pinning) or two (double-pinning) edge contact angles describing the shape of menisci pinned at the system edges. For both types of capillary condensation, we formulate the Kelvin-like equation and determine the conditions under which the given type of condensation occurs.

View Article and Find Full Text PDF

Inhibition of hypoxanthine-guanine-xanthine phosphoribosyltransferase activity decreases the pool of 6-oxo and 6-amino purine nucleoside monophosphates required for DNA and RNA synthesis, resulting in a reduction in cell growth. Therefore, inhibitors of this enzyme have potential to control infections, caused by and , , , and . Five compounds synthesized here that contain a purine base covalently linked by a prolinol group to one or two phosphonate groups have values ranging from 3 nM to >10 μM, depending on the structure of the inhibitor and the biological origin of the enzyme.

View Article and Find Full Text PDF

Kelvin equation for bridging transitions.

Phys Rev E

March 2024

Department of Physical Chemistry, University of Chemical Technology Prague, Prague 6, 166 28, Czech Republic.

We study bridging transitions between a pair of nonplanar surfaces. We show that the transition can be described using a generalized Kelvin equation by mapping the system to a slit of finite length. The proposed equation is applied to analyze the asymptotic behavior of the growth of the bridging film, which occurs when the confining walls are gradually flattened.

View Article and Find Full Text PDF

Critical-point wedge filling and critical-point wetting.

Phys Rev E

February 2024

Department of Mathematics, Imperial College London, London SW7 2BZ, United Kingdom.

For simple fluids adsorbed at a planar solid substrate (modeled as an inert wall) it is known that critical-point wetting, that is, the vanishing of the contact angle θ at a temperature T_{w} lying below that of the critical point T_{c}, need not occur. While critical-point wetting necessarily happens when the wall-fluid and fluid-fluid forces have the same range (e.g.

View Article and Find Full Text PDF

Antimicrobial activity and properties of de novo design of short synthetic lipopeptides.

Folia Microbiol (Praha)

April 2024

Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemical Technology Prague, Prague, Czech Republic.

Article Synopsis
  • The article discusses the development of newly designed peptides with potential biological activity.
  • The researchers created nine peptides made of six amino acids, focusing on enhancing their hydrophobicity by adding palmitic or lithocholic acid to the amino end.
  • The study found that these modified lipopeptides exhibited strong antimicrobial effects, particularly against certain bacteria and fungi, and one specific peptide demonstrated high efficacy against human liver cancer cells.
View Article and Find Full Text PDF

Critical behaviour of the contact angle within nonwetting gaps.

J Phys Condens Matter

January 2024

GISC, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain.

Recent density functional theory and simulation studies of fluid adsorption near planar walls in systems where the wall-fluid and fluid-fluid interactions have different ranges, have shown that critical point wetting may not occur and instead nonwetting gaps appear in the surface phase diagram, separating lines of wetting and drying transitions, that extend up to the critical temperature. Here we clarify the features of the surface phase diagrams that are common, regardless of the range and balance of the forces, showing, in particular, that the lines of temperature driven wetting and drying transitions, as well as lines of constant contact angleπ>θ>0, always converge to an ordinary surface phase transition at. When nonwetting gaps appear the contact angle either vanishes or tends toast≡(Tc-T)/Tc→0.

View Article and Find Full Text PDF

Surface Phase Diagrams for Wetting with Long-Ranged Forces.

Phys Rev Lett

September 2023

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular Modelling, The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, 165 02 Prague, Czech Republic.

Recent density functional theory and simulation studies of wetting and drying transitions in systems with long-ranged, dispersionlike forces, away from the near vicinity of the bulk critical temperature T_{c}, have questioned the generality of the global surface phase diagrams for wetting, due to Nakanishi and Fisher, pertinent to systems with short-ranged forces. We extend these studies deriving fully analytic results which determine the surface phase diagrams over the whole temperature range up to T_{c}. The phase boundaries, order of, and asymmetry between the lines of wetting and drying transitions are determined exactly showing that they always converge to an ordinary surface critical point.

View Article and Find Full Text PDF

Co-Pyrolysis of Unsaturated C4 and Saturated C6+ Hydrocarbons-An Experimental Study to Evaluate Steam-Cracking Performance.

Materials (Basel)

February 2023

Department of Organic Technology, Faculty of Chemical Technology, University of Chemical Technology Prague, Technická 5, Dejvice, 166 28 Prague, Czech Republic.

Unsaturated C4 hydrocarbons are abundant in various petrochemical streams. They can be considered as a potential feedstock for the steam-cracking process, where they must be co-processed with C6 and higher (C6+) hydrocarbons of primary naphtha fractions. Co-pyrolysis experiments aiming at the comparison of different C4 hydrocarbon performances were carried out in a laboratory micro-pyrolysis reactor under standardized conditions: 820 °C, 400 kPa, and 0.

View Article and Find Full Text PDF

Critical effects and scaling at meniscus osculation transitions.

Phys Rev E

November 2022

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, 165 02 Prague, Czech Republic.

We propose a simple scaling theory describing critical effects at rounded meniscus osculation transitions which occur when the Laplace radius of a condensed macroscopic drop of liquid coincides with the local radius of curvature R_{w} in a confining parabolic geometry. We argue that the exponent β_{osc} characterizing the scale of the interfacial height ℓ_{0}∝R_{w}^{β_{osc}} at osculation, for large R_{w}, falls into two regimes representing fluctuation-dominated and mean-field-like behavior, respectively. These two regimes are separated by an upper critical dimension, which is determined here explicitly and depends on the range of the intermolecular forces.

View Article and Find Full Text PDF

Phase behavior of fluids in undulated nanopores.

Phys Rev E

August 2022

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Department of Molecular Modelling, 165 02 Prague, Czech Republic.

The geometry of walls forming a narrow pore may qualitatively affect the phase behavior of the confined fluid. Specifically, the nature of condensation in nanopores formed of sinusoidally shaped walls (with amplitude A and period P) is governed by the wall mean separation L as follows. For L>L_{t}, where L_{t} increases with A, the pores exhibit standard capillary condensation similar to planar slits.

View Article and Find Full Text PDF

Capillary condensation and depinning transitions in open slits.

Phys Rev E

October 2021

Department of Mathematics, Imperial College London, London SW7 2BZ, United Kingdom.

We study the low-temperature phase equilibria of a fluid confined in an open capillary slit formed by two parallel walls separated by a distance L which are in contact with a reservoir of gas. The top wall of the capillary is of finite length H while the bottom wall is considered of macroscopic extent. This system shows rich phase equilibria arising from the competition between two different types of capillary condensation, corner filling, and meniscus depinning transitions depending on the value of the aspect ratio a=L/H and divides into three regimes: For long capillaries, with a<2/π, the condensation is of type I involving menisci which are pinned at the top edges at the ends of the capillary.

View Article and Find Full Text PDF

Edge Contact Angle, Capillary Condensation, and Meniscus Depinning.

Phys Rev Lett

September 2021

Department of Mathematics, Imperial College London, London SW7 2BZ, United Kingdom.

We study the phase equilibria of a fluid confined in an open capillary slit formed when a wall of finite length H is brought a distance L away from a second macroscopic surface. This system shows rich phase equilibria arising from the competition between two different types of capillary condensation, corner filling and meniscus depinning transitions depending on the value of the aspect ratio a=L/H. For long capillaries, with a<2/π, the condensation is of type I involving menisci which are pinned at the top edges at the ends of the capillary characterized by an edge contact angle.

View Article and Find Full Text PDF

Breaking Cassie's Law for Condensation in a Nanopatterned Slit.

Phys Rev Lett

March 2021

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Department of Molecular Modelling, 165 02 Prague, Czech Republic.

We study the phase transitions of a fluid confined in a capillary slit made from two adjacent walls, each of which are a periodic composite of stripes of two different materials. For wide slits the capillary condensation occurs at a pressure which is described accurately by a combination of the Kelvin equation and the Cassie law for an averaged contact angle. However, for narrow slits the condensation occurs in two steps involving an intermediate bridging phase, with the corresponding pressures described by two new Kelvin equations.

View Article and Find Full Text PDF

Height of a liquid drop on a wetting stripe.

Phys Rev E

November 2020

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic; The Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Department of Molecular Modelling, 165 02 Prague, Czech Republic.

Adsorption of liquid on a planar wall decorated by a hydrophilic stripe of width L is considered. Under the condition that the wall is only partially wet (or dry) while the stripe tends to be wet completely, a liquid drop is formed above the stripe. The maximum height ℓ_{m}(δμ) of the drop depends on the stripe width L and the chemical potential departure from saturation δμ where it adopts the value ℓ_{0}=ℓ_{m}(0).

View Article and Find Full Text PDF

Filling, depinning, unbinding: Three adsorption regimes for nanocorrugated substrates.

Phys Rev E

July 2020

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 165 02, Czech Republic.

We study adsorption at periodically corrugated substrates formed by scoring rectangular grooves into a planar solid wall which interacts with the fluid via long-range (dispersion) forces. The grooves are assumed to be macroscopically long but their depth, width, and separations can all be molecularly small. We show that the entire adsorption process can be divided into three parts consisting of (i) filling the grooves by a capillary liquid; (ii) depinning of the liquid-gas interface from the wall edges; and (iii) unbinding of the interface from the top of the wall, which is accompanied by a rapid but continuous flattening of its shape.

View Article and Find Full Text PDF

Three-Phase Fluid Coexistence in Heterogenous Slits.

Phys Rev Lett

March 2020

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague, Czech Republic.

We study the competition between local (bridging) and global condensation of fluid in a chemically heterogeneous capillary slit made from two parallel adjacent walls each patterned with a single stripe. Using a mesoscopic modified Kelvin equation, which determines the shape of the menisci pinned at the stripe edges in the bridge phase, we determine the conditions under which the local bridging transition precedes capillary condensation as the pressure (or chemical potential) is increased. Provided the contact angle of the stripe is less than that of the outer wall we show that triple points, where evaporated, locally condensed, and globally condensed states all coexist are possible depending on the value of the aspect ratio a=L/H, where H is the stripe width and L the wall separation.

View Article and Find Full Text PDF

Symmetry-breaking morphological transitions at chemically nanopatterned walls.

Phys Rev E

December 2019

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 6, 165 02, Czech Republic.

We study the structure and morphological changes of fluids that are in contact with solid composites formed by alternating and microscopically wide stripes of two different materials. One type of the stripes interacts with the fluid via long-ranged Lennard-Jones-like potential and tends to be completely wet, while the other type is purely repulsive and thus tends to be completely dry. We consider closed systems with a fixed number of particles that allows for stabilization of fluid configurations breaking the lateral symmetry of the wall potential.

View Article and Find Full Text PDF

Scaling of wetting and prewetting transitions on nanopatterned walls.

Phys Rev E

September 2019

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 16502, Czech Republic.

We consider a nanopatterned planar wall consisting of a periodic array of stripes of width L, which are completely wet by liquid (contact angle θ=0), separated by regions of width D which are completely dry (contact angle θ=π). Using microscopic density functional theory, we show that, in the presence of long-ranged dispersion forces, the wall-gas interface undergoes a first-order wetting transition, at bulk coexistence as the separation D is reduced to a value D_{w}∝lnL, induced by the bridging between neighboring liquid droplets. Associated with this is a line of prewetting transitions occurring off coexistence.

View Article and Find Full Text PDF

Cell-substrate interactions can modulate cellular behaviors in a variety of biological contexts, including development and disease. Light-responsive materials have been recently proposed to engineer active substrates with programmable topographies directing cell adhesion, migration, and differentiation. However, current approaches are affected by either fabrication complexity, limitations in the extent of mechanical stimuli, lack of full spatio-temporal control, or ease of use.

View Article and Find Full Text PDF

Bridging of liquid drops at chemically structured walls.

Phys Rev E

April 2019

Department of Physical Chemistry, University of Chemical Technology Prague, Praha 6, 166 28, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, Prague 165 02, Czech Republic.

Using mesoscopic interfacial models and microscopic density functional theory we study fluid adsorption at a dry wall decorated with three completely wet stripes of width L separated by distances D_{1} and D_{2}. The stripes interact with the fluid with long-range forces inducing a large finite-size contribution to the surface free energy. We show that this nonextensive free-energy contribution scales with lnL and drives different types of bridging transition corresponding to the merging of liquid drops adsorbed at neighboring wetting stripes when the separation between them is molecularly small.

View Article and Find Full Text PDF

Geometry-induced interface pinning at completely wet walls.

Phys Rev E

April 2019

Department of Physical Chemistry, University of Chemical Technology Prague, 166 28 Prague 6, Czech Republic and Department of Molecular and Mesoscopic Modelling, ICPF of the Czech Academy Sciences, 165 02 Prague 6, Czech Republic.

We study complete wetting of solid walls that are patterned by parallel nanogrooves of depth D and width L with a periodicity of 2L. The wall is formed of a material which interacts with the fluid via a long-range potential and exhibits first-order wetting transition at temperature T_{w}, should the wall be planar. Using a nonlocal density functional theory we show that at a fixed temperature T>T_{w} the process of complete wetting depends sensitively on two microscopic length scales L_{c}^{+} and L_{c}^{-}.

View Article and Find Full Text PDF

A unique analysis of an enzyme activity versus structure modification of the tomato nuclease R-TBN1 is presented. R-TBN1, the non-specific nuclease belonging to the S1-P1 nuclease family, was recombinantly produced in N. benthamiana.

View Article and Find Full Text PDF

Sphingolipidomics of Thermotolerant Yeasts.

Lipids

June 2018

Lab of Fungal Genetics and Metabolism, Institute of Microbiology of the CAS, v.v.i, Vídeňská 1083, 142 20, Prague, Czech Republic.

Mass spectrometry-based shotgun lipidomics was applied to the analysis of sphingolipids of 11 yeast strains belonging to four genera, that is Cryptococcus, Saccharomyces, Schizosaccharomyces, and Wickerhamomyces. The analysis yielded comprehensive results on both qualitative and quantitative representation of complex sphingolipids of three classes-phosphoinositol ceramide (PtdInsCer), mannosyl inositol phosphoceramide (MInsPCer), and mannosyl diinositol phosphoceramide (M(InsP) Cer). In total, nearly 150 molecular species of complex sphingolipids were identified.

View Article and Find Full Text PDF

Continuous condensation in nanogrooves.

Phys Rev E

May 2018

Department of Physical Chemistry, University of Chemical Technology Prague, 166 28 Prague 6, Czech Republic and Department of Microscopic and Mesoscopic Modelling, ICPF of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic.

We consider condensation in a capillary groove of width L and depth D, formed by walls that are completely wet (contact angle θ=0), which is in a contact with a gas reservoir of the chemical potential μ. On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D→∞), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ∼(μ_{cc}-μ)^{-1/4} as μ→μ_{cc}^{-} where μ_{cc} is the chemical potential pertinent to capillary condensation in a slit pore of width L.

View Article and Find Full Text PDF