17 results match your criteria: "University of Cambridge Tennis Court Road[Affiliation]"

Biological membranes are composed exclusively of phospholipids comprising glycerol-1-phosphate or glycerol-3-phosphate. By contrast, primitive membranes would have likely been composed of heterogeneous mixtures of phospholipids, including non-natural analogues comprising glycerol-2-phosphate, as delivered by prebiotic synthesis. Thus, it is not clear how the selection of natural phospholipids could have come about.

View Article and Find Full Text PDF

The application of peptide stapling using photoswitchable linkers has gained notable interest for potential therapeutic applications. However, many existing methodologies of photoswitching still rely on the use of tissue-damaging and weakly skin-penetrating UV light. Herein, we describe the development of a tetra--chloro azobenzene linker that was successfully used for cysteine-selective peptide stapling SAr.

View Article and Find Full Text PDF

CK2 is a ubiquitous protein kinase with an anti-apoptotic role and is found to be overexpressed in multiple cancer types. To this end, the inhibition of CK2 is of great interest with regard to the development of novel anti-cancer therapeutics. ATP-site inhibition of CK2 is possible; however, this typically results in poor selectivity due to the highly conserved nature of the catalytic site amongst kinases.

View Article and Find Full Text PDF

A biosynthetic pathway for the red-antibiotic, prodigiosin, was proposed over a decade ago but not all the suggested intermediates could be detected experimentally. Here we show that a thioester that was not originally included in the pathway is an intermediate. In addition, the enzyme PigE was originally described as a transaminase but we present evidence that it also catalyses the reduction of the thioester intermediate to its aldehyde substrate.

View Article and Find Full Text PDF

Bioelectrochemical approaches for energy conversion rely on efficient wiring of natural electron transport chains to electrodes. However, state-of-the-art exogenous electron mediators give rise to significant energy losses and, in the case of living systems, long-term cytotoxicity. Here, we explored new selection criteria for exogenous electron mediation by examining phenazines as novel low-midpoint potential molecules for wiring the photosynthetic electron transport chain of the cyanobacterium sp.

View Article and Find Full Text PDF

Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge.

View Article and Find Full Text PDF

γ-Secretase cleaves the C99 fragment of the amyloid precursor protein, leading to formation of aggregated β-amyloid peptide central to Alzheimer's disease, and Notch, essential for cell regulation. Recent cryogenic electron microscopy (cryo-EM) structures indicate major changes upon substrate binding, a β-sheet recognition motif, and a possible helix unwinding to expose peptide bonds towards nucleophilic attack. Here we report side-by-side comparison of the 303 K dynamics of the two proteins in realistic membranes using molecular dynamics simulations.

View Article and Find Full Text PDF

Biophotovoltaic systems (BPVs) resemble microbial fuel cells, but utilise oxygenic photosynthetic microorganisms associated with an anode to generate an extracellular electrical current, which is stimulated by illumination. Study and exploitation of BPVs have come a long way over the last few decades, having benefited from several generations of electrode development and improvements in wiring schemes. Power densities of up to 0.

View Article and Find Full Text PDF

A Microsomal Proteomics View of H₂O₂- and ABA-Dependent Responses.

Proteomes

August 2017

Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.

The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes.

View Article and Find Full Text PDF

Self-Assembly of Amyloid Fibrils That Display Active Enzymes.

ChemCatChem

July 2014

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences 15 Datun Road, Chaoyang District, Beijing 100101 (China) ; Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW (UK).

Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface.

View Article and Find Full Text PDF

Motivation: Although the cores of homologous proteins are relatively well conserved, amino acid substitutions lead to significant differences in the structures of divergent superfamilies. Thus, the classification of amino acid sequence patterns and the selection of appropriate fragments of the protein cores of homologues of known structure are important for accurate comparative modelling.

Results: CHORAL utilizes a knowledge-based method comprising an amalgam of differential geometry and pattern recognition algorithms to identify conserved structural patterns in homologous protein families.

View Article and Find Full Text PDF

The ribosomal frameshifting signal of the mouse embryonal carcinoma differentiation regulated (Edr) gene represents the sole documented example of programmed -1 frameshifting in mammalian cellular genes [Shigemoto,K., Brennan,J., Walls,E,.

View Article and Find Full Text PDF

Ryanodine and inositol 1,4,5-trisphosphate (IP(3)) receptors - two related families of Ca(2+) channels responsible for release of Ca(2+) from intracellular stores [1] - are biphasically regulated by cytosolic Ca(2+) [2] [3] [4]. It is thought that the resulting positive feedback allows localised Ca(2+)-release events to propagate regeneratively, and that the negative feedback limits the amplitude of individual events [5] [6]. Stimulation of IP(3) receptors by Ca(2+) occurs through a Ca(2+)-binding site that becomes exposed only after IP(3) has bound to its receptor [7] [8].

View Article and Find Full Text PDF

The pleckstrin homology (PH) domains of a number of proteins have been found to interact in vitro with inositol phospholipids; recent experiments show that these interactions may be important in directing protein translocation to specific parts of the cell following stimulus-induced lipid breakdown or synthesis.

View Article and Find Full Text PDF

Praziquantel is the current drug of choice for human schistosomiasis. Recent reports from laboratory and field studies concerning reduced praziquantel efficacy against Schistosoma mansoni have generated some controversy. The prevailing question is whether the emergence of strains of schistosome resistant to praziquantel is a fact, or an artifact resulting from erroneous field or laboratory experimentation.

View Article and Find Full Text PDF