141 results match your criteria: "University of Cambridge Lensfield Road[Affiliation]"

The self-assembly of amyloid-β peptide (Aβ) into fibrils and oligomers is linked to Alzheimer's disease (AD). Fibrillar aggregates in AD patient's brains contain several post-translational modifications, including phosphorylation at positions 8 and 26. These play a key role in modifying the aggregation propensity of Aβ, yet how they affect the mechanism of aggregation is only poorly understood.

View Article and Find Full Text PDF

Hierarchical linker thermolysis has been used to enhance the porosity of monolithic UiO-66-based metal-organic frameworks (MOFs) containing 30 wt% 2-aminoterephthalic acid (BDC-NH) linker. In this multivariate ( mixed-linker) MOF, the thermolabile BDC-NH linker decomposed at ∼350 °C, inducing mesopore formation. The nitrogen sorption of these monolithic MOFs was probed, and an increase in gas uptake of more than 200 cm g was observed after activation by heating, together with an increase in pore volume and mean pore width, indicating the creation of mesopores.

View Article and Find Full Text PDF

Musketeer is a powerful open-source software tool for the analysis of titration data, featuring a simple cross-platform graphical interface for importing data directly from UV-vis, fluorescence and NMR spectrometers, or from spreadsheets. The fast data analysis algorithm can be used to obtain equilibrium constants for simple binding isotherms, as well as for more complicated systems with multiple competing equilibria. Applications of Musketeer for the analysis of a range of different supramolecular and biomolecular systems are illustrated, including titrations with multiple spectroscopically active species, competitive binding assays, denaturation experiments, optimisation of concentrations as variables.

View Article and Find Full Text PDF

Zinc metal batteries (ZMBs) are promising candidates for low-cost, intrinsically safe, and environmentally friendly energy storage systems. However, the anode is plagued with problems such as the parasitic hydrogen evolution reaction, surface passivation, corrosion, and a rough metal electrode morphology that is prone to short circuits. One strategy to overcome these issues is understanding surface processes to facilitate more homogeneous electrodeposition of zinc by guiding the alignment of electrodeposited zinc.

View Article and Find Full Text PDF

The development of methods for the assembly of secondary α-alkyl amines remains a central challenge to chemical synthesis because of their critical importance in modulating the physical properties of biologically active molecules. Despite decades of intensive research, chemists still rely on selective N-alkylation and carbonyl reductive amination to make most amine products. Here we report the further evolution of a carbonyl alkylative amination process that, for the first time, brings together primary amines, aldehydes and alkyl iodides in a visible-light-mediated multicomponent coupling reaction for the synthesis of a wide range of α-branched secondary alkylamines.

View Article and Find Full Text PDF

The synthesis and ion-pair binding properties of a heteroditopic [2]catenane receptor exhibiting highly potent and selective recognition of sodium halide salts are described. The receptor design consists of a bidentate halogen bonding donor motif for anion binding, as well as a di(ethylene glycol)-derived cation binding pocket which dramatically enhances metal cation affinity over previously reported homo[2]catenane analogues. H NMR cation, anion and ion-pair binding studies reveal significant positive cooperativity between the cation and anion binding events in which cation pre-complexation to the catenane subsequently 'switches-on' anion binding.

View Article and Find Full Text PDF

Networks of H-bonds can show non-additive behaviour, where the strength of one interaction perturbs another. The magnitude of such cooperative effects can be quantified by measuring the effect of the presence of an intramolecular H-bond at one site on a molecule on the association constant for formation of an intermolecular H-bond at another site. This approach has been used to quantify the cooperativity associated with the interaction of a primary amine with two H-bond acceptors.

View Article and Find Full Text PDF

Protein aggregation is a key process in the development of many neurodegenerative disorders, including dementias such as Alzheimer's disease. Significant progress has been made in understanding the molecular mechanisms of aggregate formation in pure buffer systems, much of which was enabled by the development of integrated rate laws that allowed for mechanistic analysis of aggregation kinetics. However, in order to translate these findings into disease-relevant conclusions and to make predictions about the effect of potential alterations to the aggregation reactions by the addition of putative inhibitors, the current models need to be extended to account for the altered situation encountered in living systems.

View Article and Find Full Text PDF

Most pathogenic bacteria, apicomplexan parasites and plants rely on the methylerythritol phosphate (MEP) pathway to obtain precursors of isoprenoids. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS), a thiamine diphosphate (ThDP)-dependent enzyme, catalyses the first and rate-limiting step of the MEP pathway. Due to its absence in humans, DXPS is considered as an attractive target for the development of anti-infectious agents and herbicides.

View Article and Find Full Text PDF

Recognition-encoded melamine oligomers (REMO) are synthetic polymers with an alternating 1,3,5-triazine-piperazine backbone and side chains equipped with either a phenol or phosphine oxide recognition unit. Here, we describe an automated method for highly efficient solid-phase synthesis (SPS) of REMO of any specified length and sequence. These SPS protocols are amongst the most robust reported to date, as demonstrated by the synthesis of a mixed-sequence 42-mer, which was obtained in excellent crude purity on a 100 mg scale.

View Article and Find Full Text PDF

This article defines the role that continuous flow chemistry can have in new reaction discovery, thereby creating molecular assembly opportunities beyond our current capabilities. Most notably the focus is based upon photochemical, electrochemical and temperature sensitive processes where continuous flow methods and machine assisted processing can have significant impact on chemical reactivity patterns. These flow chemical platforms are ideally placed to exploit future innovation in data acquisition, feed-back and control through artificial intelligence (AI) and machine learning (ML) techniques.

View Article and Find Full Text PDF

The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists.

View Article and Find Full Text PDF

The coenzyme A (CoA) biosynthesis pathway has attracted attention as a potential target for much-needed novel antimicrobial drugs, including for the treatment of tuberculosis (TB), the lethal disease caused by (). Seeking to identify inhibitors of phosphopantetheine adenylyltransferase (PPAT), the enzyme that catalyses the penultimate step in CoA biosynthesis, we performed a fragment screen. In doing so, we discovered three series of fragments that occupy distinct regions of the PPAT active site, presenting a unique opportunity for fragment linking.

View Article and Find Full Text PDF

It has long been known that the dielectric constant of confined water should be different from that in bulk. Recent experiments have shown that it is vanishingly small, however the origin of the phenomenon remains unclear. Here we used molecular dynamics simulations (AIMD) and AIMD-trained machine-learning potentials to understand water's structure and electronic properties underpinning this effect.

View Article and Find Full Text PDF

Rational design of metal-organic framework (MOF)-based materials for catalysis, gas capture and storage, requires deep understanding of the host-guest interactions between the MOF and the adsorbed molecules. Solid-State NMR spectroscopy is an established tool for obtaining such structural information, however its low sensitivity limits its application. This limitation can be overcome with dynamic nuclear polarization (DNP) which is based on polarization transfer from unpaired electrons to the nuclei of interest and, as a result, enhancement of the NMR signal.

View Article and Find Full Text PDF

Molecular electrostatic potential surfaces (MEPS) calculated using density functional theory have been used to develop a simplified description of the non-covalent interaction properties of organic molecules. The Atomic Interaction Point (AIP) model introduced here represents an evolution of the Surface Site Interaction Point (SSIP) model described previously, in which a molecule is represented by a discrete set of interaction points that define sites of interaction with other molecules. The interaction sites are described by interaction parameters that are equivalent to the experimentally determined H-bond donor and acceptor parameters and .

View Article and Find Full Text PDF

The simultaneous upcycling of all components in lignocellulosic biomass and the greenhouse gas CO presents an attractive opportunity to synthesise sustainable and valuable chemicals. However, this approach is challenging to realise due to the difficulty of implementing a solution process to convert a robust and complex solid (lignocellulose) together with a barely soluble and stable gas (CO). Herein, we present the complete oxidative valorisation of lignocellulose coupled to the reduction of low concentration CO through a three-stage fractionation-photocatalysis-electrolysis process.

View Article and Find Full Text PDF

The development of methods for replication of synthetic information oligomers will underpin the use of directed evolution to search new chemical space. Template-directed replication of triazole oligomers has been achieved using a covalent primer in conjunction with non-covalent binding of complementary building blocks. A phenol primer equipped with an alkyne was first attached to a benzoic recognition unit on a mixed sequence template selective covalent ester base-pair formation.

View Article and Find Full Text PDF

The introduction of nitrogen atoms into small molecules is of fundamental importance and it is vital that ever more efficient and selective methods for achieving this are developed. With this aim, the potential of nitrene chemistry has long been appreciated but its application has been constrained by the extreme reactivity of these labile species. This liability however can be attenuated by complexation with a transition metal and the resulting metal nitrenoids have unique and highly versatile reactivity which includes the amination of certain types of aliphatic C-H bonds as well as reactions with alkenes to afford aziridines.

View Article and Find Full Text PDF
Article Synopsis
  • Large-language models like GPT-4 have sparked interest among scientists, especially in fields like chemistry and materials science.
  • A hackathon was organized to explore their potential applications, resulting in various projects such as predicting molecular properties and developing educational tools.
  • The rapid prototyping of ideas within the hackathon suggests that LLMs could significantly influence multiple scientific disciplines beyond just chemistry and materials science.
View Article and Find Full Text PDF

The selectivity in a group of oxazaborolidinium ion-catalysed reactions between aldehyde and diazo compounds cannot be explained using transition state theory. VRAI-selectivity, developed to predict the outcome of dynamically controlled reactions, can account for both the chemo- and the stereo-selectivity in these reactions, which are controlled by reaction dynamics. Subtle modifications to the substrate or catalyst substituents alter the potential energy surface, leading to changes in predominant reaction pathways and altering the barriers to the major product when reaction dynamics are considered.

View Article and Find Full Text PDF

H-bonding interactions in networks are stabilised by cooperativity, but the relationship between the chemical structures of the interacting functional groups and the thermodynamic consequences is not well-understood. We have used compounds with an intramolecular H-bond between a pyridine H-bond acceptor and an amide NH group to quantify cooperative effects on the H-bond acceptor properties of the amide carbonyl group. H NMR experiments in -octane confirm the presence of the intramolecular H-bond and show that this interaction is intact in the 1 : 1 complex formed with perfluoro--butanol (PFTB).

View Article and Find Full Text PDF

Direct amination of arene C-H bonds is an attractive disconnection to form aniline-derived building blocks. This transformation presents significant practical challenges; classical methods for -selective amination require strongly acidic or forcing conditions, while contemporary catalytic processes often require bespoke directing groups and/or precious metal catalysis. We report a mild and procedurally straightforward -selective amination of arene carboxylic acids, arising from a facile rearrangement of acyl -hydroxylamines without requiring precious metal catalysts.

View Article and Find Full Text PDF

The diastereoselective assembly of achiral constituents through a single spontaneous process into complex covalent architectures bearing multiple stereogenic elements still remains a challenge for synthetic chemists. Here, we show that such an extreme level of control can be achieved by implementing stereo-electronic information on synthetic organic building blocks and templates and that non-directional interactions (, electrostatic and steric interactions) can transfer this information to deliver, after self-assembly, high-molecular weight macrocyclic species carrying up to 16 stereogenic elements. Beyond the field of supramolecular chemistry, this proof of concept should stimulate the on-demand production of highly structured polyfunctional architectures.

View Article and Find Full Text PDF