1 results match your criteria: "University of California at Irvine 92697-3425[Affiliation]"

Graphical techniques for modeling the dependencies of random variables have been explored in a variety of different areas, including statistics, statistical physics, artificial intelligence, speech recognition, image processing, and genetics. Formalisms for manipulating these models have been developed relatively independently in these research communities. In this paper we explore hidden Markov models (HMMs) and related structures within the general framework of probabilistic independence networks (PINs).

View Article and Find Full Text PDF