9 results match your criteria: "University of California VA Medical Center[Affiliation]"

Plasma lipoproteins are essential vehicles of lipid distribution for cellular energy and structural requirements as well as for excretion of lipid excess. Imbalances in lipoprotein metabolism are known to contribute to metabolic diseases ranging from vascular inflammation and atherosclerosis to obesity and diabetes. The lipid and protein cargo carried by lipoprotein subclasses have long been the focus of studies exploring the contribution of plasma lipoproteins in health and in metabolic disorders.

View Article and Find Full Text PDF

Exosomes represent one class of extracellular vesicles that are thought to be shed by all cell types. Although the exact nature of exosome biogenesis and function remains incompletely understood, they are increasingly recognized as a source of intercellular communication in health and disease. Recent observations of RNA exchange via donor cell-derived exosomes that exert genetic regulation in recipient cells have led to a boon into exosome research.

View Article and Find Full Text PDF

The movement of leukocytes from the blood into peripheral tissues is a central feature of immune surveillance, but also contributes to the pathogenesis of inflammatory and autoimmune diseases. Integrins are a family of adhesion and signaling molecules made up of paired a and beta subunits, and the integrin alpha4beta1 plays a prominent role in the trafficking of mononuclear leukocytes. We have previously described the direct interaction of the signaling adaptor molecule paxillin with the cytoplasmic domain of the alpha4 integrin subunit.

View Article and Find Full Text PDF

HOXA9 expression is a common feature of acute myeloid leukemia, and high-level expression is correlated with poor prognosis. Moreover, HOXA9 overexpression immortalizes murine marrow progenitors that are arrested at a promyelocytic stage of differentiation when cultured and causes leukemia in recipient mice following transplantation of HOXA9 expressing bone marrow. The molecular mechanisms underlying the physiologic functions and transforming properties of HOXA9 are poorly understood.

View Article and Find Full Text PDF

HOX homeodomain proteins are master developmental regulators, which are now thought to function as transcription factors by forming cooperative DNA binding complexes with PBX or other protein partners. Although PBX proteins exhibit regulated subcellular localization and function in the nucleus in other tissues, little data exists on HOX and PBX protein localization during skin development. We now show that the HOXB6 protein is expressed in the suprabasal layer of the early developing epidermis and throughout the upper layers of late fetal and adult human skin.

View Article and Find Full Text PDF

Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias.

Leukemia

December 1999

Division of Hematology and Medical Oncology, Department of Medicine, University of California VA Medical Center, San Francisco, CA, USA.

There is increasing evidence that HOX homeobox genes play a role in leukemogenesis. Recent studies have demonstrated that enforced co-expression of HOXA9 and MEIS1 in murine marrow leads to rapid development of myeloid leukemia, and that these proteins exhibit cooperative DNA binding. However, it is unclear whether co-activation of HOXA9 and MEIS genes is a common occurrence in human leukemias.

View Article and Find Full Text PDF

Aberrant activation of the HOX, MEIS, and PBX homeodomain protein families is associated with leukemias, and retrovirally driven coexpression of HOXA9 and MEIS1 is sufficient to induce myeloid leukemia in mice. Previous studies have demonstrated that HOX-9 and HOX-10 paralog proteins are unique among HOX homeodomain proteins in their capacity to form in vitro cooperative DNA binding complexes with either the PBX or MEIS protein. Furthermore, PBX and MEIS proteins have been shown to form in vivo heterodimeric DNA binding complexes with each other.

View Article and Find Full Text PDF

Recent studies show that Hox homeodomain proteins from paralog groups 1 to 10 gain DNA binding specificity and affinity through cooperative binding with the divergent homeodomain protein Pbx1. However, the AbdB-like Hox proteins from paralogs 11, 12, and 13 do not interact with Pbx1a, raising the possibility of different protein partners. The Meis1 homeobox gene has 44% identity to Pbx within the homeodomain and was identified as a common site of viral integration in myeloid leukemias arising in BXH-2 mice.

View Article and Find Full Text PDF