1 results match your criteria: "University of California Berkeley CA USA thg@berkeley.edu.[Affiliation]"
Digit Discov
June 2022
Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California Berkeley CA USA
We report a new deep learning message passing network that takes inspiration from Newton's equations of motion to learn interatomic potentials and forces. With the advantage of directional information from trainable force vectors, and physics-infused operators that are inspired by Newtonian physics, the entire model remains rotationally equivariant, and many-body interactions are inferred by more interpretable physical features. We test NewtonNet on the prediction of several reactive and non-reactive high quality data sets including single small molecules, a large set of chemically diverse molecules, and methane and hydrogen combustion reactions, achieving state-of-the-art test performance on energies and forces with far greater data and computational efficiency than other deep learning models.
View Article and Find Full Text PDF