7 results match your criteria: "University of Brescia and National Institute of Neuroscience[Affiliation]"

MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients.

Neurobiol Aging

September 2018

Department of Neurology, Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. Electronic address:

MicroRNA (miRNA) misregulation in peripheral blood has been linked to Parkinson disease (PD) but its role in the disease progression remains elusive. We performed an explorative genome-wide study of miRNA expression levels in dopaminergic neurons (DAn) from PD patients generated by somatic cell reprogramming and induced pluripotent stem cells differentiation. We quantified expression levels of 377 miRNAs in DAn from 3 sporadic PD patients (sPD), 3 leucine-rich repeat kinase 2-associated PD patients (L2PD) (total 6 PD), and 4 healthy controls.

View Article and Find Full Text PDF

Modeling the genetic complexity of Parkinson's disease by targeted genome edition in iPS cells.

Curr Opin Genet Dev

October 2017

Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:

Patient-specific iPSC are being intensively exploited as experimental disease models. Even for late-onset diseases of complex genetic influence, such as Parkinson's disease (PD), the use of iPSC-based models is beginning to provide important insights into the genetic bases of PD heritability. Here, we present an update on recently reported genetic risk factors associated with PD.

View Article and Find Full Text PDF

Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients.

EMBO Mol Med

December 2015

Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain Cell Therapy Program, Faculty of Medicine, University of Barcelona (UB), Barcelona, Spain Movement Disorders Unit, Department of Neurology, Hospital Clínic of Barcelona Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB), Barcelona, Spain.

The epigenomic landscape of Parkinson's disease (PD) remains unknown. We performed a genomewide DNA methylation and a transcriptome studies in induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) generated by cell reprogramming of somatic skin cells from patients with monogenic LRRK2-associated PD (L2PD) or sporadic PD (sPD), and healthy subjects. We observed extensive DNA methylation changes in PD DAn, and of RNA expression, which were common in L2PD and sPD.

View Article and Find Full Text PDF

EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide.

J Natl Cancer Inst

May 2015

Pathology (MC, BL, MFB, DM, VP, FF, PLP) and Pharmacology Units (CB, MP), Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, Italy; Medical Oncology (SG), Neurosurgery (LB), Radiation Oncology (MB), and Neuroradiology Departments (RL), Spedali Civili of Brescia, University of Brescia, Italy; Neural Stem Cell Biology Unit, Division of Regenerative Medicine, Stem Cells & Gene Therapy, San Raffaele Scientific Institute, Milan (SM, RG); Pathology Unit, Department of Surgical and Morphological Sciences, University of Insubria, Italy (DF); Neurological Institute Besta, Milan, Italy (SP, GF); Herbert Irving Comprehensive Cancer Center, Department of Pathology & Cell Biology and Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY (PD); IRCCS San Camillo Hospital, Venice, Italy (MP).

Background: Lack of robust predictive biomarkers, other than MGMT promoter methylation, makes temozolomide responsiveness in newly diagnosed glioblastoma (GBM) patients difficult to predict. However, we identified patients with long-term survival (≥35 months) within a group of newly diagnosed GBM patients treated with standard or metronomic adjuvant temozolomide schedules. We thus investigated possible molecular profiles associated with longer survival following temozolomide treatment.

View Article and Find Full Text PDF

CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid.

Neuroscience

August 2015

Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, Viale Europa 11, 25123 Brescia, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy. Electronic address:

Activation of microglia associated with neuroinflammation and loss of phagocytic activity is considered to play a prominent role in the pathogenesis of Alzheimer's disease (AD). CHF5074 (CSP-1103) has been shown to improve cognition and reduce brain inflammation in patients with mild cognitive impairment (MCI). CHF5074 was also found to reverse impairments in recognition memory and improve hippocampal long-term potentiation when administered to plaque-free Tg2576 mice (5-month-old) for 4 weeks.

View Article and Find Full Text PDF

MT5-MMP regulates adult neural stem cell functional quiescence through the cleavage of N-cadherin.

Nat Cell Biol

July 2014

1] Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain [2] Departamento de Biología Celular, Universidad de Valencia, 46100 Valencia, Spain.

The identification of mechanisms that maintain stem cell niche architecture and homeostasis is fundamental to our understanding of tissue renewal and repair. Cell adhesion is a well-characterized mechanism for developmental morphogenetic processes, but its contribution to the dynamic regulation of adult mammalian stem cell niches is still poorly defined. We show that N-cadherin-mediated anchorage of neural stem cells (NSCs) to ependymocytes in the adult murine subependymal zone modulates their quiescence.

View Article and Find Full Text PDF

Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel(-/-)) mice developed a Parkinson's disease-like neuropathology with ageing. At 18 months of age, c-rel(-/-) mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining.

View Article and Find Full Text PDF