10 results match your criteria: "University of Birmingham and Nottingham[Affiliation]"

Role of endothelin ET receptors in the hypertension induced by the VEGFR-2 kinase inhibitors axitinib and lenvatinib in conscious freely-moving rats.

Biochem Pharmacol

October 2024

Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK. Electronic address:

Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib.

View Article and Find Full Text PDF

E-selectin is expressed on endothelial cells in response to inflammatory cytokines and mediates leukocyte rolling and extravasation. However, studies have been hampered by lack of experimental approaches to monitor expression in real time in living cells. Here, NanoLuc Binary Technology (NanoBiT) in conjunction with CRISPR-Cas9 genome editing was used to tag endogenous E-selectin in human umbilical vein endothelial cells (HUVECs) with the 11 amino acid nanoluciferase fragment HiBiT.

View Article and Find Full Text PDF

Characterisation of tyrosine kinase inhibitor-receptor interactions at VEGFR2 using sunitinib-red and nanoBRET.

Biochem Pharmacol

August 2023

Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and Nottingham, The Midlands, UK. Electronic address:

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis, proliferation and migration of vascular endothelial cells. It is well known that cardiovascular safety liability for a wide range of small molecule tyrosine kinase inhibitors (TKIs) can result from interference with the VEGFR2 signalling system. In this study we have developed a ligand-binding assay using a fluorescent analogue of sunitinib (sunitinib-red) and full length VEGFR2 tagged on its C-terminus with the bioluminescent protein nanoluciferase to monitor ligand-binding to VEGFR2 using bioluminescence resonance energy transfer (BRET).

View Article and Find Full Text PDF

Equilibrium binding assays are one of the mainstays of current drug discovery efforts to evaluate the interaction of drugs with receptors in membranes and intact cells. However, in recent years, there has been increased focus on the kinetics of the drug-receptor interaction to gain insight into the lifetime of drug-receptor complexes and the rate of association of a ligand with its receptor. Furthermore, drugs that act on topically distinct sites (allosteric) from those occupied by the endogenous ligand (orthosteric site) can induce conformational changes in the orthosteric binding site leading to changes in the association and/or dissociation rate constants of orthosteric ligands.

View Article and Find Full Text PDF

Association of single nucleotide polymorphisms in the IL-23 receptor with several auto-inflammatory diseases, led to the heterodimeric receptor and its cytokine-ligand IL-23, becoming important drug targets. Successful antibody-based therapies directed against the cytokine have been licenced and a class of small peptide antagonists of the receptor have entered clinical trials. These peptide antagonists may offer therapeutic advantages over existing anti-IL-23 therapies, but little is known about their molecular pharmacology.

View Article and Find Full Text PDF

Use of NanoBiT and NanoBRET to characterise interleukin-23 receptor dimer formation in living cells.

Br J Pharmacol

June 2023

Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.

Background And Purpose: Interleukin-23 (IL-23) and its receptor are important drug targets for the treatment of auto-inflammatory diseases. IL-23 binds to a receptor complex composed of two single transmembrane spanning proteins IL23R and IL12Rβ1. In this study, we aimed to gain further understanding of how ligand binding induces signalling of IL-23 receptor complexes using the proximity-based techniques of NanoLuc Binary Technology (NanoBiT) and Bioluminescence Resonance Energy Transfer (BRET).

View Article and Find Full Text PDF

Kinetic analysis of endogenous β -adrenoceptor-mediated cAMP GloSensor™ responses in HEK293 cells.

Br J Pharmacol

May 2023

Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.

Background And Aim: Standard pharmacological analysis of agonist activity utilises measurements of receptor-mediated responses at a set time-point, or at the peak response level, to characterise ligands. However, the occurrence of non-equilibrium conditions may dramatically impact the properties of the response being measured. Here we have analysed the initial kinetic phases of cAMP responses to β -adrenoceptor agonists in HEK293 cells expressing the endogenous β -adrenoceptor at extremely low levels.

View Article and Find Full Text PDF

A kinetic intra-cellular assay (KICA) to measure quantitative compound binding kinetics within living cells.

STAR Protoc

March 2022

Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.

The Kinetic Intra-Cellular Assay (KICA) is a recombinant cell-based technique that utilizes NanoBRET technology. KICA enables the measurement of intracellular binding kinetics. This protocol describes steps for cellular transfection and expression, followed by addition of a target specific fluorophore conjugated probe and a range of concentrations of competitor compounds, followed by the measurement of BRET in a 384 well format.

View Article and Find Full Text PDF

Deep vein thrombosis is a life-threatening development of blood clots in deep veins. Immobility and blood flow stagnancy are typical risk factors indicating that fluid dynamics play an important role in the initiation of venous clots. However, the roles of physical parameters of the valves and flow conditions in deep vein thrombosis initiation have not been fully understood.

View Article and Find Full Text PDF

Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine.

View Article and Find Full Text PDF