5 results match your criteria: "University Station 3591[Affiliation]"
Funct Plant Biol
February 2015
Wake Forest University, Department of Biology, 136 Winston Hall, Winston-Salem, NC 27106, USA.
The south-central Rocky Mountains, USA, are characterised by a dry, continental mesoclimate with typical convective cloud formation during the afternoon. Little is known about the specific influence of such predictable cloud patterns on the microclimate and ecophysiology of associated species. During the summer of 2012, days with afternoon clouds were most common (50% of all days) compared with completely clear (24%) or cloudy days (6.
View Article and Find Full Text PDFMolecules
November 2014
Department of Biology, High Point University, University Station 3591, High Point, NC 27262, USA.
Plants growing in high-light environments during winter often exhibit leaf reddening due to synthesis of anthocyanin pigments, which are thought to alleviate photooxidative stress associated with low-temperature photoinhibition through light attenuation and/or antioxidant activity. Seasonal high-light stress can be further exacerbated by a limited photosynthetic capacity, such as nitrogen-deficiency. In the present study, we test the following hypotheses using three populations of the semi-evergreen vine Lonicera japonica: (1) nitrogen deficiency corresponds with reduced photosynthetic capacity; (2) individuals with reduced photosynthetic capacity synthesize anthocyanin pigments in leaves during winter; and (3) anthocyanin pigments help alleviate high-light stress by attenuating green light.
View Article and Find Full Text PDFPlanta
November 2014
Department of Biology, High Point University, University Station 3591, High Point, NC, 27262, USA,
Anthocyanins in upper (adaxial) leaf tissues provide greater photoprotection than in lower (abaxial) tissues, but also predispose tissues to increased shade acclimation and, consequently, reduced photosynthetic capacity. Abaxial anthocyanins may be a compromise between these costs/benefits. Plants adapted to shaded understory environments often exhibit red/purple anthocyanin pigmentation in lower (abaxial) leaf surfaces, but rarely in upper (adaxial) surfaces.
View Article and Find Full Text PDFJ Plant Physiol
January 2013
High Point University, Department of Biology, University Station 3591, High Point, NC 27262, USA.
The association between plant water stress and synthesis of red, anthocyanin pigments in leaves has led some plant biologists to propose an osmotic function of leaf reddening. According to this hypothesis, anthocyanins function as a solute in osmotic adjustment (OA), contributing to depression of osmotic potential (Ψ(π)) and maintenance of turgor pressure during drought-stressed conditions. Here we calculate the percent contribution of anthocyanin to leaf Ψ(π) during OA in two angiosperm evergreen species, Galax urceolata and Gaultheria procumbens.
View Article and Find Full Text PDFNew Phytol
April 2012
School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
Red-pigmented leaf margins are common, but their functional significance is unknown. We hypothesized that red leaf margins reduce leaf herbivory by signalling to herbivorous insects the presence of increased chemical defences. Leaves were collected from a natural population of Pseudowintera colorata.
View Article and Find Full Text PDF