19 results match your criteria: "University Sq. 1[Affiliation]"

In this work, we developed a technology that enables rapid deposition of biomimetic composite films onto natural enamel slices (known as biotemplates). These films are composed of polydopamine (PDA) and nanocrystalline carbonate-substituted hydroxyapatite (nano-cHAp) that have been functionalized with amino acid l-Arginine. We utilized atomic force microscopy (AFM) and scattering scanning near-field optical microscopy (s-SNOM) combined with infrared (IR) synchrotron to achieve nanoscale spatial resolution for both IR absorption and topography analyses.

View Article and Find Full Text PDF

The creation of buffer (hybrid) layers that provide improved adhesion to two heterogeneous materials is a promising and high-priority research area in the field of dental materials science. In our work, using FTIR and Raman microspectroscopy at the submicron level in a system of dental composites/intact dental enamel, we assessed the molecular features of formation and chemically visualized the hybrid interface formed on the basis of a nature-like adhesive, polydopamine (PDA). It is shown that a homogeneous bioinspired PDA-hybrid interface with an increased content of O-Ca-O bonds can be created using traditional methods of dental tissue pretreatment (diamond micro drilling, acid etching), as well as the subsequent alkalinization procedure and the developed synthesis technology.

View Article and Find Full Text PDF

In our work, we studied thin nickel films deposited by electroless plating for use as a barrier and seed layer in the through-silicon vias (TSV) technology. El-Ni coatings were deposited on a copper substrate from the original electrolyte and with the use of various concentrations of organic additives in the composition of the electrolyte. The surface morphology, crystal state, and phase composition of the deposited coatings were studied by SEM, AFM, and XRD methods.

View Article and Find Full Text PDF

Using a biomimetic strategy and bioinspired materials, our work proposed a new technological approach to create a hybrid transitional layer between enamel and dental biocomposite. For this purpose, an amino acid booster conditioner based on a set of polar amino acids (lysine, arginine, hyaluronic acid), calcium alkali, and a modified adhesive based on BisGMA and nanocrystalline carbonate-substituted hydroxyapatite are used during dental enamel restoration. The molecular properties of the hybrid interface formed using the proposed strategy were understood using methods of multivariate statistical analysis of spectral information collected using the technique of synchrotron infrared microspectroscopy.

View Article and Find Full Text PDF

In this report, we demonstrated the formation of a biomimetic mineralizing layer obtained on the surface of dental enamel (biotemplate) using bioinspired nanocrystalline carbonate-substituted calcium hydroxyapatite (ncHAp), whose physical and chemical properties are closest to the natural apatite dental matrix, together with a complex of polyfunctional organic and polar amino acids. Using a set of structural, spectroscopy, and advanced microscopy techniques, we confirmed the formation of a nanosized ncHAp-based mineralized layer, as well as studying its chemical, substructural, and morphological features by means of various methods for the pretreatment of dental enamel. The pretreatment of a biotemplate in an alkaline solution of Ca(OH) and an amino acid booster, together with the executed subsequent mineralization with ncHAp, led to the formation of a mineralized layer with homogeneous micromorphology and the preferential orientation of the ncHAp nanocrystals.

View Article and Find Full Text PDF

This pilot study presents a practical approach to detecting and visualising the initial forms of caries that are not clinically registered. The use of a laser-induced contrast visualisation (LICV) technique was shown to provide detection of the originating caries based on the separation of emissions from sound tissue, areas with destroyed tissue and regions of bacterial invasion. Adding microRaman spectroscopy to the measuring system enables reliable detection of the transformation of the organic-mineral component in the dental tissue and the spread of bacterial microflora in the affected region.

View Article and Find Full Text PDF

The application of biomimetic strategies and nanotechnologies (nanodentology) has led to numerous innovations and provided a considerable impetus by creating a new class of modern adhesion restoration materials, including different nanofillers. An analysis of the molecular properties of biomimetic adhesives was performed in this work to find the optimal composition that provides high polymerisation and mechanical hardness. Nanocrystalline carbonate-substituted calcium hydroxyapatite (nano-cHAp) was used as the filler of the light-cured adhesive Bis-GMA (bisphenol A-glycidyl methacrylate).

View Article and Find Full Text PDF

Differences in the surface interactions of non-stoichiometric nanocrystalline B-type carbonate-substituted hydroxyapatite (n-cHAp) with the amino acids L-Lysine hydrochloride (L-LysHCl) and L-Arginine hydrochloride (L-ArgHCl) in acidic and alkaline media were determined using structural and spectroscopic analysis methods. The obtained data confirm that hydroxyapatite synthesized using our technique, which was used to develop the n-cHAp/L-LysHCl and n-cHAp/L-ArgHCl composites, is nanocrystalline. Studies of molecular composition of the samples by Fourier transform infrared spectroscopy under the change in the charge state of L-Lysine in environments with different alkalinity are consistent with the results of X-ray diffraction analysis, as evidenced by the redistribution of the modes' intensities in the spectra that is correlated with the side chains, i.

View Article and Find Full Text PDF

In this work, for the first time, the influence of the coordination environment as well as Ca and P atomic states on biomimetic composites integrated with dental tissue was investigated. Bioinspired dental composites were synthesised based on nanocrystalline calcium carbonate-substituted hydroxyapatite Ca4ICa6IIPO46-xCO3x+yOH2-y (nano-cHAp) obtained from a biogenic source and a set of polar amino acids that modelled the organic matrix. Biomimetic composites, as well as natural dental tissue samples, were investigated using Raman spectromicroscopy and synchrotron X-ray absorption near edge structure (XANES) spectroscopy.

View Article and Find Full Text PDF

In this short communication, we provide information on the use of the hierarchical cluster analysis of synchrotron ATR-FTIR 2D chemical imaging spectral data as a useful and powerful approach to the microspectroscopic diagnostics of molecular composition in the hybrid sound dentin/dental composite interfaces and materials, including ones developed with the use of biomimetic strategies. The described diagnostic approach can be successfully transferred to the analysis and visualisation of 2D spectral data, collected using laboratory Raman and FTIR microspectroscopy techniques.

View Article and Find Full Text PDF

The aim of this work is to develop a biomimetic interface between the natural tooth tissue and the restorative composite and to study it on the basis of synchrotron micro-FTIR mapping and multidimensional processing of the spectral data array. Using hierarchical cluster analysis of 3D FTIR data revealed marked improvements in the formation of the dentine/adhesive/dental hybrid interface using a biomimetic approach. The use of a biomimetic strategy (application of an amino acid-modified primer, alkaline calcium and a nano-c-HAp-modified adhesive) allowed the formation of a matrix that can be structurally integrated with natural dentine and dental composite.

View Article and Find Full Text PDF

Development of a new approach to diagnosis of the early fluorosis forms by means of FTIR and Raman microspectroscopy.

Sci Rep

December 2020

Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), 800 Blackburn Rd, Clayton, VIC, 3168, Australia.

This study is aimed at investigating the features of mineralization of the enamel apatite at initial stages of fluorosis development. Samples of teeth with intact and fluorotic enamel in an early stage of the disease development (Thylstrup-Fejerskov Index = 1-3) were studied by Raman scattering and FTIR using Infrared Microspectroscopy beamline at Australian Synchrotron equipment. Based on the data obtained by optical microspectroscopy and calculation of the coefficient R [A-type/B-type], which represents the ratio of carbonation fraction of CO, replacing phosphate or hydroxyl radicals in the enamel apatite lattice, the features of mineralization of enamel apatite in the initial stages of development of the pathology caused by an increased content of fluorine in the oral cavity were established.

View Article and Find Full Text PDF

Bumblebees are important for crop pollination. Currently, the number of pollinators is decreasing worldwide, which is attributed mostly to the widespread use of pesticides. The aim of this work was to develop a method for assessing the genotoxicity of pesticides for the Bombus terrestris L.

View Article and Find Full Text PDF

Repolarization of Ferroelectric Superlattices BaZrO/BaTiO.

Sci Rep

December 2019

Physical Department, Voronezh State University, University sq. 1, 394018, Voronezh, Russia.

With the use of the modified Sawyer-Tower scheme and Merz technique, studies were conducted on the repolarization characteristics of ferroelectric (BaZrO/BaTiO) superlattices on monocrystalline MgO substrate. Studies of temperature changes in the dielectric hysteresis loops indicated a sufficiently smooth decrease in spontaneous polarization compared with homogeneous barium titanate near the phase transition temperature of the superlattice. Experimental studies of switched currents have shown that the switching processes in the synthesized superlattices are implemented in two stages: activation motion ("creep" mode) and non-activation motion (slip mode).

View Article and Find Full Text PDF

Spectroscopic signature of the pathological processes of carious dentine based on FTIR investigations of the oral biological fluids.

Biomed Opt Express

August 2019

Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), 800 Blackburn Rd, Clayton, VIC 3168, Australia.

The aim of our work is to find a spectroscopic signature of the pathological processes of carious dentine based on the investigations of the molecular composition of the oral biological fluids with the use of FTIR synchrotron techniques. This complex analysis of the obtained data shows that a number of signatures are present only in the spectra of dentine and gingival fluids from the patients developing caries of the deep dentine tissues. The detected features and complex analysis of the quantitative and qualitative data representing signatures of the development of oral cavity pathologies can enhance the quality of dental screening.

View Article and Find Full Text PDF

This article is devoted to the investigation of the dielectric and repolarization properties of barium zirconate and barium titanate BaZrO₃/BaTiO₃ superlattices with a period of 13.322 nm on a monocrystal magnesium oxide (MgO) substrate. Synthesized superlattices demonstrated a ferroelectric phase transition at a temperature of approximately 393 °C, which is far higher than the Curie temperature of BaTiO₃ thin films and bulk samples.

View Article and Find Full Text PDF

Background: Improving the quality of life is part of the global agenda. The focus is predominantly on prevention of socially significant diseases. Combating dental caries-related diseases is a top priority as it has a huge impact on people's social lives.

View Article and Find Full Text PDF

The temperature of the transition to the polar state in ferroelectric composites, representing spherical ferroelectric inclusions embedded in a dielectric matrix, under a depolarizing field effect is investigated. This temperature is determined both in the absence and presence of screening effects of the depolarizing field of the bound charges of spontaneous polarization at the inclusions surface. The absence case shows that the Curie point shift is determined by the ratio of the Curie constant of the ferroelectric inclusion to the permittivity of the matrix.

View Article and Find Full Text PDF

Insects pollinate 75% of crops used for human consumption. Over the last decade, a substantial reduction in the abundance of pollinating insects has been recorded and recognized as a severe matter for food supply security. Many of the important food crops destined for human consumption are grown in greenhouses.

View Article and Find Full Text PDF