63,199 results match your criteria: "University Research Institute on Electron Microscopy & Materials[Affiliation]"

Receptor binding, structure, and tissue tropism of cattle-infecting H5N1 avian influenza virus hemagglutinin.

Cell

January 2025

Beijing Life Science Academy, Beijing 102200, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:

The ongoing circulation of highly pathogenic avian influenza (HPAI) A (H5N1) viruses, particularly clade 2.3.4.

View Article and Find Full Text PDF

Atomic Imaging of the Surface Termination and Reconstruction of Low and High Index Iridium Oxide Surfaces and Insights into Their Facet-Dependent Oxygen Evolution Activities.

ACS Appl Mater Interfaces

January 2025

Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China.

Resolving the atomic surface structure, particularly surface termination or reconstruction, is essential for understanding the catalytic properties of metal oxides. Although rutile phase iridium dioxide (IrO) is the state-of-the-art electrocatalyst for the oxygen evolution reaction (OER) in water splitting, the atomic-level surface structures of IrO remain largely unexplored, limiting our understanding of its facet-dependent OER activities. Herein, we perform aberration-corrected integrated differential phase contrast scanning transmission electron microscopy of the low- and high-index surface structures of spindle-shaped IrO nanorods and reveal distinct surface terminations and/or reconstructions on different surfaces.

View Article and Find Full Text PDF

Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.

View Article and Find Full Text PDF

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans.

View Article and Find Full Text PDF

PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.

View Article and Find Full Text PDF

Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.

Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear.

Methods: Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia.

View Article and Find Full Text PDF

Investigating the effects of drought stress and subsequent recovery on the structure and function of chloroplasts is essential to understanding how plants adapt to environmental stressors. We investigated Ctenanthe setosa (Roscoe) Eichler, an ornamental plant that can tolerate prolonged drought periods (40 and 49 days of water withdrawal). Conventional biochemical, biophysical, physiological and (ultra)structural methods combined for the first time in a higher plant with in vivo small-angle neutron scattering (SANS) were used to characterize the alterations induced by drought stress and subsequent recovery.

View Article and Find Full Text PDF

Nanoporous anodic alumina (nPAA) films formed on aluminum in lower aliphatic carboxylic acids exhibit blue self-coloring and characteristic properties such as photoluminescence (PL), electroluminescence, and electron spin resonance. The blue colors are seemingly originated from the adsorbed radicals incorporating into the oxide during the aluminum anodization. However, there is lack of reports revealing the detailed activation mechanism of the adatoms in the complexes.

View Article and Find Full Text PDF

Eco-friendly one-pot hydrothermal synthesis of cyclodextrin metal-organic frameworks for enhanced CO capture.

Carbohydr Polym

March 2025

Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin 150030, China; College of Food Science, Northeast Agricultural University, Harbin 150030, China.

Polysaccharide-based metal-organic frameworks have attracted widespread attention due to their combination of the biocompatibility and flexibility of polysaccharides. Cyclodextrin are interesting bio-ligands in the construction of polysaccharide-based MOFs. Conventional methods for preparing cyclodextrin metal-organic frameworks (CD-MOFs) are often time-consuming and inefficient.

View Article and Find Full Text PDF

Starch-derived hydrophilic malto-oligosaccharides (Glc, where n = 1-7) conjugated to hydrophobic solanesol through click chemistry, i.e., Glc-b-Sol copolymers, have demonstrated significant promise in developing fully natural block co-oligomers for solid-state nanopatterning applications.

View Article and Find Full Text PDF

The study involves the modification of a non-conventional starch isolated from the under-utilized variety of Chinese water chestnut (CWC (Eleocharis tuberosa) and integrating it to fabricate stabilized and curcumin-enriched Pickering emulsions with enhanced bioavailability, thermal stability, and retention of encapsulated curcumin. A time-efficient, semi-dried esterification method was used to prepare modified amphiphilic starches using 3, 6, or 9 % (w/v) octenyl succinic anhydride (OSA) and characterized through degree of substitution (DS), contact angle, particle size, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in-vitro digestibility. Moreover, Pickering emulsions were formulated using CWCS-OSA at 3 %, 6 %, or 9 % concentrations to serve as a carrier for curcumin to improve its water solubility and storage stability.

View Article and Find Full Text PDF

This study aims to explore the development of natural bio-based amphiphilic block copolymers for drug delivery applications. We investigated block copolymers derived from tamarind seed xyloglucan and solanesol, focusing on their synthesis, structural analysis, aqueous self-assembly, and drug encapsulation. Specifically, xyloglucan hydrolysate segments with number-average degrees of polymerization (DPs) of between 8 and 44 (XOS, XMS, XMS, XMS, and XMS) were used as the hydrophilic blocks, whereas plant-sourced solanesol was selected as the hydrophobic segment.

View Article and Find Full Text PDF

In the present study, the stability of a supersaturated solution of indomethacin (IM) was evaluated in hydrophobically modified hydroxypropylmethylcellulose (HM-HPMC) solutions, with and without parent cyclodextrins (CDs). A highly supersaturated state of IM was maintained in the HM-HPMC solution and was further stabilized by the addition of α-CD and β-CD. Notably, the highest level of supersaturation was achieved in HM-HPMC/α-CD solution, which maintained a high concentration of IM for up to 120 h.

View Article and Find Full Text PDF

Morpho-functional characterisation of cœlomocytes in the aquacultivated sea cucumber Holothuria scabra: from cell diversity to transcriptomic immune response.

Fish Shellfish Immunol

January 2025

Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Cellular and Molecular Immunology, GIGA Research, University of Liège, 4000 Liège, Belgium.

Holothuria scabra is one of the most valuable species of sea cucumber owing to its exploitation as a seafood product. This study aims to describe the main molecular and cellular actors in the immunology of the holothuroid H. scabra.

View Article and Find Full Text PDF

Dexamethasone (Dex) is a primary medication for treating dry eye syndrome, and tobramycin-dexamethasone eye drops are commercially available. However, the eye's complex physiological environment reduces its bioavailability, and repeated use can lead to significant systemic toxicity and side effects. This study introduces a novel conjugate of chitosan (CS) and N-acetylcysteine (NAC), a bioadhesive material, which was grafted onto the surface of a Dex-supported nanostructured lipid carrier (NLC) to develop an innovative nanoparticle lipid ocular drug delivery system (CS-NAC@Dex-NLC).

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have shown great promise as pH-responsive drug delivery systems, with considerable potential for targeted cancer therapy. In this study, we synthesized a novel curcumin-loaded MOF, named UWO-2 (CUR@UWO-2), and developed its biocomposite form, CS-κ-Cr/CUR@UWO-2, by coating it with chitosan (CS) and κ-carrageenan (κ-Cr). Structural analysis through powder X-ray diffraction (PXRD) confirmed the successful synthesis of UWO-2 and the incorporation of CUR within the MOF structure.

View Article and Find Full Text PDF

HMGB1 secretion by resveratrol in NSCLC: A pathway to ferroptosis-mediated platelet activation suppression.

Cell Signal

January 2025

Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China. Electronic address:

Background: Cancer-associated venous thromboembolism (CAT) is a frequent and serious complication in cancer patients. Resveratrol, a natural compound with reported anti-tumor effects, is not fully understood in its role regarding CAT in lung cancer. This study aims to explore resveratrol's potential to diminish platelet activation induced by lung adenocarcinoma cells and uncover the underlying mechanisms.

View Article and Find Full Text PDF

Picoxystrobin causes mitochondrial dysfunction in earthworms by interfering with complex enzyme activity and binding to the electron carrier cytochrome c protein.

Environ Pollut

January 2025

Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China. Electronic address:

Picoxystrobin (PICO) poses a great threat to earthworms due to its widespread use in agriculture and its stability in soil. Mitochondria may be a sensitive target organ for the toxic effects of PICO on worms. Therefore, evaluating the effect of PICO on mitochondria can further understand the toxic mechanism of PICO to earthworms.

View Article and Find Full Text PDF

Ultrasmooth Micromilling of Stainless Steel by Ultrashort Pulsed Laser Ablation Using MHz Bursts.

ACS Appl Mater Interfaces

January 2025

Department of Advanced Production Engineering, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands.

Ultrashort pulsed (USP) laser burst ablation has attracted numerous interests for its great potential in enhancing ablation efficiency and reducing the heat-affected zone. However, little attention has been paid to the influence of burst ablation on the processed surface quality. To fill this research gap, the present study conducts a comprehensive investigation on the surface processing of stainless steel using ultrashort pulsed laser burst ablation.

View Article and Find Full Text PDF

Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells.

View Article and Find Full Text PDF

Objectives: This study aimed to assess the vertical misfit at the implant-abutment interface in external and internal connections across various implant brands, comparing original milled titanium abutments with laser-sintered cobalt-chromium (Co-Cr) abutments.

Materials And Methods: A total of 160 implants from four different brands were utilized, with 80 featuring external connections (EC) and 80 internal connections (IC). Original milled titanium abutments (n = 160) and Co-Cr laser-sintered abutments (n = 160) were randomly attached to each connection type, following the manufacturer's recommended torque.

View Article and Find Full Text PDF

The rapid advancement of covalent organic frameworks (COFs) in recent years has firmly established them as a new class of molecularly precise and highly tuneable porous materials. However, compared to other porous materials, such as zeolites and metal-organic frameworks, the successful integration of hierarchical porosity into COFs remains largely unexplored. The challenge lies in identifying appropriate synthetic methods to introduce secondary pores without compromising the intrinsic structural porosity of COFs.

View Article and Find Full Text PDF

Objective: This study utilized three cell lines: normal prostate epithelial RWPE-1, androgen-dependent LNCaP, and androgen-independent PC3. We investigated the inhibitory effects of phenylboronic acid (PBA)'s inhibitory effect on cellular proliferation due to its ability to disrupt microtubule formation in prostate cancer cell lines. Additionally, this study aimed to assess the cytotoxic effects of PBA on prostate cancer cells using twodimensional (2D) and three-dimensional (3D) cell culture models.

View Article and Find Full Text PDF