32 results match your criteria: "University Grenoble Alpes (UGA)[Affiliation]"

A signal processing tool adapted to the periodic biphasic phenomena: the Dynalet transform.

Math Med Biol

December 2024

Escuela de Ingeniería Civil Informática, Universidad de Valparaíso, General Cruz 222, Valparaíso, Chile.

The linear functional analysis, historically founded by Fourier and Legendre (Fourier's supervisor), has provided an original vision of the mathematical transformations between functional vector spaces. Fourier, and later Laplace and Wavelet transforms, respectively defined using the simple and damped pendulum, have been successfully applied in numerous applications in Physics and engineering problems. However the classical pendulum basis may not be the most appropriate in several problems, such as biological ones, where the modelling approach is not linked to the pendulum.

View Article and Find Full Text PDF

Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown.

View Article and Find Full Text PDF

Vaccination has been widely recognized as an effective measure for preventing infectious diseases. To facilitate quantitative research into the activation of adaptive immune responses in the human body by vaccines, it is important to develop an appropriate mathematical model, which can provide valuable guidance for vaccine development. In this study, we constructed a novel mathematical model to simulate the dynamics of antibody levels following vaccination, based on principles from immunology.

View Article and Find Full Text PDF

Information Gradient among Nucleotide Sequences of Essential RNAs from an Evolutionary Perspective.

Int J Mol Sci

July 2024

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

We hypothesize that the first ancestral "protocell" molecular structures, i.e., the first RNAs and peptides that gradually transformed into real cells once the Earth had cooled sufficiently for organic molecules to appear, have left traces in the RNAs and the genes in present cells.

View Article and Find Full Text PDF

Infectious diseases, such as Dengue fever, pose a significant public health threat. Developing a reliable mathematical model plays a crucial role in quantitatively elucidating the kinetic characteristics of antibody-virus interactions. By integrating previous models and incorporating the antibody dynamic theory, we have constructed a novel and robust model that can accurately simulate the dynamics of antibodies and viruses based on a comprehensive understanding of immunology principles.

View Article and Find Full Text PDF

DVGs (Defective Viral Genomes) are prevalent in RNA virus infections. In this investigation, we conducted an analysis of high-throughput sequencing data and observed widespread presence of DVGs in SARS-CoV-2. Comparative analysis between SARS-CoV-2 and diverse DNA viruses revealed heightened susceptibility to damage and increased sequencing sample heterogeneity within the SARS-CoV-2 genome.

View Article and Find Full Text PDF

NOX2 control over energy metabolism plays a role in acute myeloid leukaemia prognosis and survival.

Free Radic Biol Med

November 2023

Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain. Electronic address:

Acute myeloid leukaemia (AML) is a highly heterogeneous disease, however the therapeutic approaches have hardly changed in the last decades. Metabolism rewiring and the enhanced production of reactive oxygen species (ROS) are hallmarks of cancer. A deeper understanding of these features could be instrumental for the development of specific AML-subtypes treatments.

View Article and Find Full Text PDF

Molecular Insight into Iron Homeostasis of Acute Myeloid Leukemia Blasts.

Int J Mol Sci

September 2023

Laboratory of Fundamental and Applied Bioenergetics (LBFA), University Grenoble Alpes, INSERM U1055, 38000 Grenoble, France.

Acute myeloid leukemia (AML) remains a disease of gloomy prognosis despite intense efforts to understand its molecular foundations and to find efficient treatments. In search of new characteristic features of AML blasts, we first examined experimental conditions supporting the amplification of hematological CD34 progenitors ex vivo. Both AML blasts and healthy progenitors heavily depended on iron availability.

View Article and Find Full Text PDF

We have employed mathematical modeling techniques to construct a comprehensive framework for elucidating the intricate response mechanisms of the immune system, facilitating a deeper understanding of B-cell clonal deletion and somatic hypermutation. Our improved model introduces innovative mechanisms that shed light on positive and negative selection processes during T-cell and B-cell development. Notably, clonal deletion is attributed to the attenuated immune stimulation exerted by self-antigens with high binding affinities, rendering them less effective in eliciting subsequent B-cell maturation and differentiation.

View Article and Find Full Text PDF

Several studies have linked bad prognoses of acute myeloid leukemia (AML) to the ability of leukemic cells to reprogram their metabolism and, in particular, their lipid metabolism. In this context, we performed "in-depth" characterization of fatty acids (FAs) and lipid species in leukemic cell lines and in plasma from AML patients. We firstly showed that leukemic cell lines harbored significant differences in their lipid profiles at steady state, and that under nutrient stress, they developed common mechanisms of protection that led to variation in the same lipid species; this highlights that the remodeling of lipid species is a major and shared mechanism of adaptation to stress in leukemic cells.

View Article and Find Full Text PDF

A Novel Mathematical Model That Predicts the Protection Time of SARS-CoV-2 Antibodies.

Viruses

February 2023

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

Infectious diseases such as SARS-CoV-2 pose a considerable threat to public health. Constructing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of antibody-virus interactions. A novel and robust model is developed to integrate antibody dynamics with virus dynamics based on a comprehensive understanding of immunology principles.

View Article and Find Full Text PDF

The formulation of mathematical models using differential equations has become crucial in predicting the evolution of viral diseases in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China, which causes a severe and potentially fatal respiratory syndrome. Since then, it has been declared a pandemic by the World Health Organization and has spread around the globe.

View Article and Find Full Text PDF

More or less deadly? A mathematical model that predicts SARS-CoV-2 evolutionary direction.

Comput Biol Med

February 2023

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700, La Tronche, France. Electronic address:

SARS-CoV-2 has caused tremendous deaths globally. It is of great value to predict the evolutionary direction of SARS-CoV-2. In this paper, we proposed a novel mathematical model that could predict the evolutionary trend of SARS-CoV-2.

View Article and Find Full Text PDF

Statistical analysis supports UTR (untranslated region) deletion theory in SARS-CoV-2.

Virulence

December 2022

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), La Tronche, France.

It was noticed that the mortality rate of SARS-CoV-2 infection experienced a significant declination in the early stage of the epidemic. We suspect that the sharp deterioration of virus toxicity is related to the deletion of the untranslated region (UTR) of the virus genome. It was found that the genome length of SARS-CoV-2 engaged a significant truncation due to UTR deletion after a mega-sequence analysis.

View Article and Find Full Text PDF

A Model for the Lifespan Loss Due to a Viral Disease: Example of the COVID-19 Outbreak.

Infect Dis Rep

April 2022

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

The end of the acute phase of the COVID-19 pandemic is near in some countries as declared by World Health Organization (WHO) in January 2022 based on some studies in Europe and South Africa despite unequal distribution of vaccines to combat the disease spread globally. The heterogeneity in individual age and the reaction to biological and environmental changes that has been observed in COVID-19 dynamics in terms of different reaction to vaccination by age group, severity of infection per age group, hospitalization and Intensive Care Unit (ICU) records show different patterns, and hence, it is important to improve mathematical models for COVID-19 pandemic prediction to account for different proportions of ages in the population, which is a major factor in epidemic history. We aim in this paper to estimate, using the Usher model, the lifespan loss due to viral infection and ageing which could result in pathological events such as infectious diseases.

View Article and Find Full Text PDF

Age Dependent Epidemic Modeling of COVID-19 Outbreak in Kuwait, France, and Cameroon.

Healthcare (Basel)

March 2022

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

Revisiting the classical model by Ross and Kermack-McKendrick, the Susceptible−Infectious−Recovered (SIR) model used to formalize the COVID-19 epidemic, requires improvements which will be the subject of this article. The heterogeneity in the age of the populations concerned leads to considering models in age groups with specific susceptibilities, which makes the prediction problem more difficult. Basically, there are three age groups of interest which are, respectively, 0−19 years, 20−64 years, and >64 years, but in this article, we only consider two (20−64 years and >64 years) age groups because the group 0−19 years is widely seen as being less infected by the virus since this age group had a low infection rate throughout the pandemic era of this study, especially the countries under consideration.

View Article and Find Full Text PDF

Maximal reproduction number estimation and identification of transmission rate from the first inflection point of new infectious cases waves: COVID-19 outbreak example.

Math Comput Simul

August 2022

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

The dynamics of COVID-19 pandemic varies across countries and it is important for​ researchers to study different kind of phenomena observed at different stages of the waves during the epidemic period. Our interest in this paper is not to model what happened during the endemic state but during the epidemic state. We proposed a continuous formulation of a unique maximum reproduction number estimate with an assumption that the epidemic curve is in form of the Gaussian curve and then compare the model with the discrete form and the observed basic reproduction number during the contagiousness period considered.

View Article and Find Full Text PDF

Analysis of Reproduction Number R of COVID-19 Using Current Health Expenditure as Gross Domestic Product Percentage (CHE/GDP) across Countries.

Healthcare (Basel)

September 2021

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

(1) Background: Impact and severity of coronavirus pandemic on health infrastructure vary across countries. We examine the role percentage health expenditure plays in various countries in terms of their preparedness and see how countries improved their public health policy in the first and second wave of the coronavirus pandemic; (2) Methods: We considered the infectious period during the first and second wave of 195 countries with their current health expenditure as gross domestic product percentage (CHE/GDP). An exponential model was used to calculate the slope of the regression line while the ARIMA model was used to calculate the initial autocorrelation slope and also to forecast new cases for both waves.

View Article and Find Full Text PDF

Unpredictable, Counter-Intuitive Geoclimatic and Demographic Correlations of COVID-19 Spread Rates.

Biology (Basel)

July 2021

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

We present spread parameters for first and second waves of the COVID-19 pandemic for USA states, and for consecutive nonoverlapping periods of 20 days for the USA and 51 countries across the globe. We studied spread rates in the USA states and 51 countries, and analyzed associations between spread rates at different periods, and with temperature, elevation, population density and age. USA first/second wave spread rates increase/decrease with population density, and are uncorrelated with temperature and median population age.

View Article and Find Full Text PDF

Leukemic cells display some alterations in metabolic pathways, which play a role in leukemogenesis and in patients' prognosis. To evaluate the characteristics and the impact of this metabolic reprogramming, we explore the bone marrow samples from 54 de novo acute myeloid leukemia (AML) patients, using an untargeted metabolomics approach based on proton high-resolution magic angle spinning-nuclear magnetic resonance. The spectra obtained were subjected to multivariate statistical analysis to find specific metabolome alterations and biomarkers correlated to clinical features.

View Article and Find Full Text PDF

SARS-CoV-2 and miRNA-like inhibition power.

Med Hypotheses

November 2020

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France; The National Natural History Collections, The Hebrew University of Jerusalem, 91404 Jerusalem, Israel.

(1) Background: RNA viruses and especially coronaviruses could act inside host cells not only by building their own proteins, but also by perturbing the cell metabolism. We show the possibility of miRNA-like inhibitions by the SARS-CoV-2 concerning for example the hemoglobin and type I interferons syntheses, hence highly perturbing oxygen distribution in vital organs and immune response as described by clinicians; (2) Hypothesis: We hypothesize that short RNA sequences (about 20 nucleotides in length) from the SARS-CoV-2 virus genome can inhibit the translation of human proteins involved in oxygen metabolism, olfactory perception and immune system. (3) Methods: We compare RNA subsequences of SARS-CoV-2 protein S and RNA-dependent RNA polymerase genes to mRNA sequences of beta-globin and type I interferons; (4) Results: RNA subsequences longer than eight nucleotides from SARS-CoV-2 genome could hybridize subsequences of the mRNA of beta-globin and of type I interferons; (5) Conclusions: Beyond viral protein production, COVID-19 might affect vital processes like host oxygen transport and immune response.

View Article and Find Full Text PDF

Hydrostatic properties of partially saturated granular materials at the pore scale are evaluated by the lattice Boltzmann method (LBM) using Palabos implementation of the multi-component multiphase Shan-Chen model. Benchmark cases are presented to quantify the discretization errors and the sensitivity to geometrical and physical properties. This work offers practical guidelines to design LBM simulations of multiphase problems in porous media.

View Article and Find Full Text PDF

Inverted Covariate Effects for First versus Mutated Second Wave Covid-19: High Temperature Spread Biased for Young.

Biology (Basel)

August 2020

Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical & Labcom CNRS/UGA/OrangeLabs Telecom4Health, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France.

(1) Background: Here, we characterize COVID-19's waves, following a study presenting negative associations between first wave COVID-19 spread parameters and temperature. (2) Methods: Visual examinations of daily increases in confirmed COVID-19 cases in 124 countries, determined first and second waves in 28 countries. (3) Results: The first wave spread rate increases with country mean elevation, median population age, time since wave onset, and decreases with temperature.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of two proteins, VEGF and EG-VEGF, along with their receptors, in head and neck cancers (HNC) to understand how they contribute to the disease’s development and progression.
  • Serum samples from 64 HNC patients and tissue samples from 14 individuals (7 with oral squamous cell carcinoma (OSCC) and 7 with epulis) were analyzed through various assays in hospitals and research institutions in Morocco and France.
  • Results showed that levels of VEGF and EG-VEGF were significantly lower in HNC patients, while receptors were upregulated in OSCC tissue, suggesting a complex relationship between these factors and the limited metastasis seen in HNC.
View Article and Find Full Text PDF