6 results match your criteria: "University Autonomous from Madrid[Affiliation]"

Chitinous material bioconversion by three new chitinases from the yeast Mestchnikowia pulcherrima.

Microb Cell Fact

January 2024

Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain.

Background: Chitinases are widely distributed enzymes that perform the biotransformation of chitin, one of the most abundant polysaccharides on the biosphere, into useful value-added chitooligosaccharides (COS) with a wide variety of biotechnological applications in food, health, and agricultural fields. One of the most important group of enzymes involved in the degradation of chitin comprises the glycoside hydrolase family 18 (GH18), which harbours endo- and exo-enzymes that act synergistically to depolymerize chitin. The secretion of a chitinase activity from the ubiquitous yeast Mestchnikowia pulcherrima and their involvement in the post-harvest biological control of fungal pathogens was previously reported.

View Article and Find Full Text PDF

Lignin nanoparticles containing saccharides from fishery wastes were prepared as sustainable biofillers for advanced materials. Organosolv lignin and Kraft lignin were used as polyphenol components in association with chitosan and chitooligosaccharides. The chemophysical and biological activities of lignin/saccharide nanoparticles, such as UV-shielding, antioxidant, and antimicrobial activities, were found to be dependent on both molecular weight and deacetylation degree of saccharides, with the best performance being obtained in the presence of low-molecular-weight and highly deacetylated chitooligosaccharides.

View Article and Find Full Text PDF

Chitin-active enzymes are of great biotechnological interest due to the wide industrial application of chitinolytic materials. Non-stability and high cost are among limitations that hinder industrial application of soluble enzymes. Here we report the production and characterization of chitooligosaccharides (COS) using the fungal -chitinase Chit42 immobilized on magnetic nanoparticles and food-grade chitosan beads with an immobilization yield of about 60% using glutaraldehyde and genipin linkers.

View Article and Find Full Text PDF

The biological activity of chitooligosaccharides (COS) has made them targets for industrial and medical sectors. In this work, chitinase Chit33 from CECT 2413 was expressed in GS115 to levels never achieved before (630 mg/L; 3.3 U/mL), without its biochemical characteristics being substantially affected.

View Article and Find Full Text PDF

Background: α-Glucosidases are widely distributed enzymes with a varied substrate specificity that are traditionally used in biotechnological industries based on oligo- and polysaccharides as starting materials. According to amino acid sequence homology, α-glucosidases are included into two major families, GH13 and GH31. The members of family GH13 contain several α-glucosidases with confirmed hydrolytic activity on sucrose.

View Article and Find Full Text PDF

Background: Chitinases are ubiquitous enzymes that have gained a recent biotechnological attention due to their ability to transform biological waste from chitin into valued chito-oligomers with wide agricultural, industrial or medical applications. The biological activity of these molecules is related to their size and acetylation degree. Chitinase Chit42 from Trichoderma harzianum hydrolyses chitin oligomers with a minimal of three N-acetyl-D-glucosamine (GlcNAc) units.

View Article and Find Full Text PDF