2,041 results match your criteria: "University "POLITEHNICA" of Bucharest[Affiliation]"

Chaotic Zeeman effect: a fractional diffusion-like approch.

Sci Rep

March 2024

Center for Research and Training in Innovative Techniques of Applied Mathematics in Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, Bucharest, 060042, Romania.

It is shown that the chaotic Zeeman effect of a quantum system can be formally viewed as a result of fractional calculus. The fractional calculation brings into the equations the angle formed between the internal and the external magnetic field applied to the atom. The further the fractional coefficient is from the ordinary case corresponding to , the more important the chaotic effect is.

View Article and Find Full Text PDF

Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal.

View Article and Find Full Text PDF

Water pollution is becoming a great concern at the global level due to highly polluted effluents, which are charged year by year with increasing amounts of organic residues, dyes, pharmaceuticals and heavy metals. For some of these pollutants, the industrial treatment of wastewater is still relevant. Yet, in some cases, such as pharmaceuticals, specific treatment schemes are urgently required.

View Article and Find Full Text PDF

As the burden of type 2 diabetes (T2D) continues to escalate globally, there is a growing need for novel, less-invasive biomarkers capable of early diabetes detection and monitoring of disease progression. Liquid biopsy, recognized for its minimally invasive nature, is increasingly being applied beyond oncology, and nevertheless shows its potential when the collection of the tissue biopsy is not possible. This diagnostic approach involves utilizing liquid biopsy markers such as cell-free nucleic acids, extracellular vesicles, and diverse metabolites for the molecular diagnosis of T2D and its related complications.

View Article and Find Full Text PDF

Electrical properties and electro-thermal behavior were studied in composites with carbon black (CB) or hybrid filler (CB and graphite) and a matrix of linear low-density polyethylene (LLDPE). LLDPE, a (co)polymer with low crystallinity but with high structural regularity, was less studied for (PTC) applications, but it would be of interest due to its higher flexibility as compared to HDPE. Structural characterization by scanning electron microscopy (SEM) confirmed a segregated structure resulted from preparation by solid state powder mixing followed by hot molding.

View Article and Find Full Text PDF

The structure, composition and corrosion properties of thin films synthesized using the Pulsed Laser Deposition (PLD) technique starting from a three high entropy alloy (HEA) AlCoCrFeNix produced by vacuum arc remelting (VAR) method were investigated. The depositions were performed at room temperature on Si and mirror-like polished Ti substrates either under residual vacuum (low 10 mbar, films denoted HEA2, HEA6, and HEA10, which were grown from targets with Ni concentration molar ratio, x, equal to 0.4, 1.

View Article and Find Full Text PDF

This study aims to investigate the effect of hot deformation on commercially available Ti-6246 alloy below its β-transus transition temperature at 900 °C, knowing that the α → β transition temperature of Ti-6246 alloy is about 935 °C. The study systematically applies a thermomechanical processing cycle, including hot rolling at 900 °C and solution and ageing treatments at various temperatures, to investigate microstructural and mechanical alterations. The solution treatments are performed at temperatures of 800 °C, 900 °C and 1000 °C, i.

View Article and Find Full Text PDF

Silica aerogels have gained much interest due to their unique properties, such as being the lightest solid material, having small pore sizes, high porosity, and ultralow thermal conductivity. Also, the advancements in synthesis methods have enabled the creation of silica aerogel-based composites in combination with different materials, for example, polymers, metals, and carbon-based structures. These new silica-based materials combine the properties of silica with the other materials to create a new and reinforced architecture with significantly valuable uses in different fields.

View Article and Find Full Text PDF

Novel strategies based on natural products and synthetic derivatives to overcome resistance in Mycobacterium tuberculosis.

Eur J Med Chem

April 2024

Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania. Electronic address:

One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections.

View Article and Find Full Text PDF

Epoxy nanocomposites derived from linseed oil, reinforced with graphene oxide (GO) and montmorillonite (MMT) nanostructures, were synthesized. The nanohybrids were developed by enriching the structure of MMT and GO with primary amines through a common and simplified method, which implies physical interactions promoted by ultrasonic processing energy. The influence of the new nanoreinforcing agents along with neat ones on the overall properties of the biobased epoxy materials for coating applications was assessed.

View Article and Find Full Text PDF

Pain and frailty are closely linked. Chronic pain is a risk factor for frailty, and frailty is a risk factor for pain. People living with frailty also commonly have cognitive impairment, which can make assessment of pain and monitoring of pain management even more difficult.

View Article and Find Full Text PDF

The study presented in this paper is focused on the effect of varying the solution treatment duration on both the microstructural and mechanical properties of a cold-deformed by rolling Ti-30Nb-12Zr-5Ta-2Sn-1.25Fe (wt.%) alloy, referred to as TNZTSF.

View Article and Find Full Text PDF

To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings.

View Article and Find Full Text PDF
Article Synopsis
  • * SGLT-2 inhibitors have shown significant benefits in T1DM patients, including improved glycemic control, reduced insulin requirements, and better weight management, but they also come with risks like increased occurrences of Diabetic Ketoacidosis (DKA).
  • * The review emphasizes the need for further research on SGLT-2 inhibitors and their potential use alongside automated insulin delivery systems to enhance treatment outcomes for T1DM patients. *
View Article and Find Full Text PDF

The recovery and recycling of metals that generate toxic ions in the environment is of particular importance, especially when these are tungsten and, in particular, thorium. The radioactive element thorium has unexpectedly accessible domestic applications (filaments of light bulbs and electronic tubes, welding electrodes, and working alloys containing aluminum and magnesium), which lead to its appearance in electrical and electronic waste from municipal waste management platforms. The current paper proposes the simultaneous recovery of waste containing tungsten and thorium from welding electrodes.

View Article and Find Full Text PDF

Adsorption of Metal Ions from Single and Binary Aqueous Systems on Bio-Nanocomposite, Alginate-Clay.

Nanomaterials (Basel)

February 2024

Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering, and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania.

The aim of this work is to characterize and evaluate the retention of Cu and Ni from single and binary systems by alginate-Moroccan clay bio-composite with the utilization of calcium chloride as a cross-linking agent, using the ionotropic gelation method. The bio-nanocomposite was characterized by using a variety of techniques (SEM, EDX, XRD, and pH). The efficiency of the adsorbent was investigated under different experimental conditions by varying parameters such as pH, initial concentration, and contact time.

View Article and Find Full Text PDF

Stochastic Antiresonance for Systems with Multiplicative Noise and Sector-Type Nonlinearities.

Entropy (Basel)

January 2024

Control Department, Elbit Systems, Ramat-Hasharon 3100401, Israel.

The paradigm of stochastic antiresonance is considered for a class of nonlinear systems with sector bounded nonlinearities. Such systems arise in a variety of situations such as in engineering applications, in physics, in biology, and in systems with more general nonlinearities, approximated by a wide neural network of a single hidden layer, such as the error equation of Hopfield networks with respect to equilibria or visuo-motor tasks. It is shown that driving such systems with a certain amount of state-multiplicative noise, one can stabilize noise-free unstable systems.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) stands as the leading global cause of mortality, and coronary artery disease (CAD) has the highest prevalence, contributing to 42% of these fatalities. Recognizing the constraints inherent in the anatomical assessment of CAD, Fractional Flow Reserve (FFR) has emerged as a pivotal functional diagnostic metric. Herein, we assess the potential of employing an ensemble approach with deep neural networks (DNN) to predict invasively measured Fractional Flow Reserve (FFR) using raw anatomical data extracted from both optical coherence tomography (OCT) and X-ray coronary angiography (XA).

View Article and Find Full Text PDF

Marine glycosaminoglycans (GAG) isolated from different invertebrates, such as molluscs, starfish or jellyfish, have been described as unique molecules with important pharmacological applications. Scarce information is available on GAG extract from Rapana venosa marine snail. The aim of this study was to isolate a GAG extract from R.

View Article and Find Full Text PDF

Optimal energy management of electric vehicles using slap swarm optimization and differential flatness control has been proposed. A battery-supercapacitor power system is adopted. Each source is connected in parallel to the DC-bus using DC-DC bidirectional converters and supplies a synchronous reluctance motor (SynRM) based drive.

View Article and Find Full Text PDF

Introduction: Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation.

View Article and Find Full Text PDF

Intrastent Restenosis: A Comprehensive Review.

Int J Mol Sci

January 2024

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania.

The primary objective of this paper is to delineate and elucidate the contemporary advancements, developments, and prevailing trajectories concerning intrastent restenosis (ISR). We aim to provide a thorough overview of the most recent developments in this area, covering various aspects such as pathophysiological insights, therapeutic approaches, and new strategies for tackling the complex challenges of ISR in modern clinical settings. The authors have undertaken a study to address a relatively new medical challenge, recognizing its significant impact on the morbidity and mortality of individuals with cardiovascular diseases.

View Article and Find Full Text PDF

Nanotechnology can offer a series of new "green" and eco-friendly methods for developing different types of nanoparticles, among which the development of nanomaterials using plant extracts (phytosynthesis) represents one of the most promising areas of research. This present study details the use of lavender flowers ( Mill., well-known for their use in homeopathic applications) for the biosynthesis of silver nanoparticles with enhanced antioxidant and antibacterial properties.

View Article and Find Full Text PDF

ψ(2S) Suppression in Pb-Pb Collisions at the LHC.

Phys Rev Lett

January 2024

INFN, Sezione di Pavia, Pavia, Italy.

The production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.

View Article and Find Full Text PDF

This article portrays solid xerogel-type materials, based on chitosan, TEGylated phenothiazine, and TEG (tri-ethylene glycol), dotted with a large number of pores, that are effectively represented in their constitutive structure. They were assumed to be fractal geometrical entities and adjudged as such. The acoustic fractional propagation equation in a fractal porous media was successfully applied and solved with the help of Bessel functions.

View Article and Find Full Text PDF