2,795 results match your criteria: "Universitat Hannover[Affiliation]"

The reaction kinetics of lithotrophic ammonia-oxidizing bacteria (AOB) are strongly dependent on dissolved oxygen (DO) as their metabolism is an aerobic process. In this study, we estimate the kinetic parameters, including the oxygen affinity constant (Km[O2]) and the maximum oxygen consumption rate (Vmax[O2]), of different AOB species, by fitting the data to the Michaelis-Menten equation using nonlinear regression analysis. An example for three different species of Nitrosomonas bacteria (N.

View Article and Find Full Text PDF

We present the experimental realization of a continuous dynamical decoupling scheme which suppresses leading frequency shifts in a multi-ion frequency reference based on ^{40}Ca^{+}. By near-resonant magnetic coupling of the ^{2}S_{1/2} and ^{2}D_{5/2} Zeeman sublevels using radio-frequency dressing fields, engineered transitions with reduced sensitivity to magnetic-field fluctuations are obtained. A second stage detuned dressing field reduces the influence of amplitude noise in the first stage driving fields and decreases 2nd-rank tensor shifts, such as the electric quadrupole shift.

View Article and Find Full Text PDF

Compact, high-precision inertial sensors are needed in the control schemes of many modern physics experiments to isolate them from disturbances caused by seismic motion. We present an inertial sensor whose mechanical oscillator fits on a one-inch diameter optic. The oscillators achieve a mechanical Quality factor of a fundamental oscillation mode of 600,000 and a resonance frequency of 50 Hz, giving them a suspension thermal noise floor lower than all commercially available inertial sensors.

View Article and Find Full Text PDF

Unlike conventional colloids showing random mobility because of Brownian motion, active colloids contain nanomotors that translate chemical or physical triggers into directed movement. Whereas the acceleration of such particles works well, it is difficult to decelerate them by request. Compared to the existing literature on microscaled swimmers/robots, the main question of the current paper is whether nanoscaled colloids (<100 nm) can also be actively controlled despite the stronger relevance of rotational diffusion at such dimensions.

View Article and Find Full Text PDF

Methanotrophs are crucial in keeping environmental CH emissions in check. However, the contributions of different groups of methanotrophs at terrestrial CH-oxidation hotspots, such as the oxic-anoxic interface of rice paddies, have shown considerable inconsistency across observations. To address the knowledge gap regarding this inconsistency, methanotrophic microbiomes were enriched from paddy soils in well-mixed CH-fed batch reactors under six different incubation conditions, prepared as combinations of two CH mixing ratios (0.

View Article and Find Full Text PDF

We demonstrate a new temperature record for image-current mediated sympathetic cooling of a single proton in a cryogenic Penning trap by laser-cooled ^{9}Be^{+}. An axial mode temperature of 170 mK is reached, which is a 15-fold improvement compared to the previous best value. Our cooling technique is applicable to any charged particle, so that the measurements presented here constitute a milestone toward the next generation of high-precision Penning-trap measurements with exotic particles.

View Article and Find Full Text PDF

How c-di-GMP controls progression through the Streptomyces life cycle.

Curr Opin Microbiol

August 2024

Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK. Electronic address:

Members of the antibiotic-producing bacterial genus Streptomyces undergo a complex developmental life cycle that culminates in the production of spores. Central to control of this cell differentiation process is signaling through the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). So far, three proteins that are directly controlled by c-di-GMP in Streptomyces have been functionally and structurally characterized: the key developmental regulators BldD and σ, and the glycogen-degrading enzyme GlgX.

View Article and Find Full Text PDF

Strain-free GaAs/AlGaAs semiconductor quantum dots (QDs) grown by droplet etching and nanohole infilling (DENI) are highly promising candidates for the on-demand generation of indistinguishable and entangled photon sources. The spectroscopic fingerprint and quantum optical properties of QDs are significantly influenced by their morphology. The effects of nanohole geometry and infilled material on the exciton binding energies and fine structure splitting are well-understood.

View Article and Find Full Text PDF

Chemical chain extenders (CEs) can be used to restore the properties of recycled low-molecular-weight polyethylene terephthalate (PET). The aim of this work is to investigate the influence of the type and concentration of the CEs Joncryl and pyromellitic dianhydride (PMDA) on the viscosity and other rheological properties with a unique combination of different methods based on industrial samples originating from recycled PET bottles and trays. The resulting chain-extended thermoplastics were characterized by a combination of differential scanning calorimetry, viscometry, cone plate rheometry, pyrolysis-gas chromatography-mass spectroscopy, optical photothermal infrared spectroscopy, C solid-state- and H NMR liquid spectroscopy, and size exclusion chromatography.

View Article and Find Full Text PDF

The initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear.

View Article and Find Full Text PDF

How Nonpolar CO Aggregates on Cycloalkenes: A Case Study with Cyclopentene-(CO) Clusters.

J Phys Chem Lett

August 2024

Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.

This study explores the molecular clusters of cyclopentene (CPE) with one to three CO molecules (CPE-(CO)) through their jet-cooled rotational spectra using Fourier transform microwave spectroscopy with supplementary quantum chemical calculations. The assembly of CPE-(CO) clusters is predominantly driven by tetrel bonding networks, notably C···π(C═C) and C···O interactions, with additional stabilization from weak C─H(CH)···C═O hydrogen bonds. Critically, the dispersive forces play a pivotal role in stabilizing CO aggregation on CPE, eclipsing the effects of electrostatic and orbital interactions.

View Article and Find Full Text PDF

This work presents the development and design of aptasensor employing porous silicon (PSi) Fabry‒Pérot thin films that are suitable for use as optical transducers for the detection of lactoferrin (LF), which is a protein biomarker secreted at elevated levels during gastrointestinal (GI) inflammatory disorders such as inflammatory bowel disease and chronic pancreatitis. To overcome the primary limitation associated with PSi biosensors-namely, their relatively poor sensitivity due to issues related to complex mass transfer phenomena and reaction kinetics-we employed two strategic approaches: First, we sought to optimize the porous nanostructure with respect to factors including layer thickness, pore diameter, and capture probe density. Second, we leveraged convection properties by integrating the resulting biosensor into a 3D-printed microfluidic system that also had one of two different micromixer architectures (i.

View Article and Find Full Text PDF

The luminal surface of the intestinal epithelium is protected by a vital mucus layer, which is essential for lubrication, hydration, and fostering symbiotic bacterial relationships. Replicating and studying this complex mucus structure in vitro presents considerable challenges. To address this, we developed a hydrogel-integrated millifluidic tissue chamber capable of applying precise apical shear stress to intestinal models cultured on flat or 3D structured hydrogel scaffolds with adjustable stiffness.

View Article and Find Full Text PDF

Platinum and platinum-based alloys are used as the electrode material in cochlear implants because of the biocompatibility and the favorable electrochemical properties. Still, these implants can fail over time. The present study was conducted to shed light on the effects of microstructure on the electrochemical degradation of platinum.

View Article and Find Full Text PDF

Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens.

View Article and Find Full Text PDF

Compact structures for single-beam magneto-optical trapping of ytterbium.

Rev Sci Instrum

July 2024

Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Satellitengeodäsie und Inertialsensorik, Callinstraße 30b, 30167 Hannover, Germany.

At present, the best optical lattice clocks are based on the spectroscopy of trapped alkaline-earth-like atoms such as ytterbium and strontium. The development of mobile or even space-borne clocks necessitates concepts for the compact laser-cooling and trapping of these atoms with reduced laser requirements. Here, we present two compact and robust achromatic mirror structures for single-beam magneto-optical trapping of alkaline-earth-like atoms using two widely separated optical cooling frequencies.

View Article and Find Full Text PDF

Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution.

View Article and Find Full Text PDF

SlyD is a widely-occurring prokaryotic FKBP-family prolyl isomerase with an additional chaperone domain. Often, such as in Escherichia coli, a third domain is found at its C-terminus that binds nickel and provides it for nickel-enzyme biogenesis. SlyD has been found to bind signal peptides of proteins that are translocated by the Tat pathway, a system for the transport of folded proteins across membranes.

View Article and Find Full Text PDF

Tuning the photophysical properties of cyanine by barbiturate functionalization and nanoformulation for efficient optoacoustics- guided phototherapy.

J Control Release

August 2024

Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg 85764, Germany. Electronic address:

Cyanine derivatives are organic dyes widely used for optical imaging. However, their potential in longitudinal optoacoustic imaging and photothermal therapy remains limited due to challenges such as poor chemical stability, poor photostability, and low photothermal conversion. In this study, we present a new structural modification for cyanine dyes by introducing a strongly electron-withdrawing group (barbiturate), resulting in a new series of barbiturate-cyanine dyes (BC810, BC885, and BC1010) with suppressed fluorescence and enhanced stability.

View Article and Find Full Text PDF

Goldene: An Anisotropic Metallic Monolayer with Remarkable Stability and Rigidity and Low Lattice Thermal Conductivity.

Materials (Basel)

May 2024

Institute of Photonics, Department of Mathematics and Physics, Leibniz Universität Hannover, Welfengarten 1A, 30167 Hannover, Germany.

In a recent breakthrough in the field of two-dimensional (2D) nanomaterials, the first synthesis of a single-atom-thick gold lattice of goldene has been reported through an innovative wet chemical removal of TiC from the layered TiAuC. Inspired by this advancement, in this communication and for the first time, a comprehensive first-principles investigation using a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations has been conducted to delve into the stability, electronic, mechanical and thermal properties of the single-layer and free-standing goldene. The presented results confirm thermal stability at 700 K as well as remarkable dynamical stability of the stress-free and strained goldene monolayer.

View Article and Find Full Text PDF

Owning Decisions: AI Decision-Support and the Attributability-Gap.

Sci Eng Ethics

June 2024

Leibniz Universität Hannover, Institut für Philosophie, Im Moore 21, 30167, Hannover, Germany.

Artificial intelligence (AI) has long been recognised as a challenge to responsibility. Much of this discourse has been framed around robots, such as autonomous weapons or self-driving cars, where we arguably lack control over a machine's behaviour and therefore struggle to identify an agent that can be held accountable. However, most of today's AI is based on machine-learning technology that does not act on its own, but rather serves as a decision-support tool, automatically analysing data to help human agents make better decisions.

View Article and Find Full Text PDF

Presilphiperfolan-8β-ol synthase (BcBOT2), a substrate-promiscuous sesquiterpene cyclase (STC) of fungal origin, is capable of converting two new farnesyl pyrophosphate (FPP) derivatives modified at C7 of farnesyl pyrophosphate (FPP) bearing either a hydroxymethyl group or a methoxymethyl group. These substrates were chosen based on a computationally generated model. Biotransformations yielded five new oxygenated terpenoids.

View Article and Find Full Text PDF

The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport.

View Article and Find Full Text PDF