2 results match your criteria: "Universita di Pavia Via Taramelli 12 Pavia 27100 Italy nick.serpone@unipv.it.[Affiliation]"

This article reports on low-temperature steam reforming and water-gas shift processes to generate hydrogen efficiently when water is passed through microwave-heated activated carbon (AC) particulates, in contrast to conventional steam reforming that is not particularly efficient at temperatures around 600 °C. The microwave-driven method performed efficiently at this temperature producing hydrogen with yields of 70% or more, as a result of the microscopic local microwave heating of the AC particulates. To the extent that the activated carbon is produced from plant biomass-related raw materials, the carbon dioxide produced is carbon neutral.

View Article and Find Full Text PDF

The focus of this article rests on our discovery that a water-soluble polymer could be cross-linked to form a gel using a novel Green Chemistry gelation method: the microwave-induced in-liquid-plasma (MILP) method that requires neither a cross-linking agent nor an initiator as are required in the conventional chemical method. For instance, the water-soluble polyvinyl pyrrolidone (PVP) polymer was gelled by MILP plasma irradiation within a few minutes without using toxic cross-linking agents and initiators. As well, the hydrophobic dimethylpolysiloxane macromolecule was dispersed in aqueous media to a colloidal sol, which could then also be easily gelled under MILP irradiation conditions within a few minutes, in comparison to the conventional method that often requires several hours to days for gelation to occur in the presence of cross-linking agents and initiators.

View Article and Find Full Text PDF