1,435 results match your criteria: "Universita' di Trieste[Affiliation]"

Glassy Dynamics and Local Crystalline Order in Two-Dimensional Amorphous Silica.

J Phys Chem B

January 2025

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy.

We reassess the modeling of amorphous silica bilayers as a 2D classical system whose particles interact with an effective pairwise potential. We show that it is possible to reparametrize the potential developed by Roy, Heyde, and Heuer to quantitatively match the structural details of the experimental samples. We then study the glassy dynamics of the reparametrized model at low temperatures.

View Article and Find Full Text PDF

Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.

View Article and Find Full Text PDF

Background/objectives: We aimed to establish biatrial and biventricular reference ranges using cardiac magnetic resonance (CMR) parameters in SCD patients without heart damage.

Methods: This study compared CMR parameters, quantified by cine SSFP sequences, in 48 adult SCD patients without apparent cardiac involvement (defined by the absence of known risk factors, normal electrocardiogram, and no macroscopic myocardial fibrosis or significant cardiac iron on T2* CMR) to matched cohorts of 96 healthy controls and 96 thalassemia major (TM) patients without cardiac damage. Nine paediatric SCD patients were also analysed and compared to age- and gender-matched groups of nine TM patients and nine healthy subjects.

View Article and Find Full Text PDF

A common assumption of plant hydraulic physiology is that high hydraulic efficiency must come at the cost of hydraulic safety, generating a trade-off that raises doubts about the possibility of selecting both productive and drought-tolerant herbaceous crops. Wetland plants typically display high productivity, which requires high hydraulic efficiency to sustain transpiration rates coupled to CO uptake. Previous studies have suggested high vulnerability to xylem embolism of different wetland plants, in line with expected trade-offs.

View Article and Find Full Text PDF

Fermi Polaron in Atom-Ion Hybrid Systems.

Phys Rev Lett

December 2024

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34151 Trieste, Italy.

Atom-ion hybrid systems are promising platforms for the quantum simulation of polaron physics in certain quantum materials. Here, we investigate the ionic Fermi polaron, a charged impurity in a polarized Fermi bath, at zero temperature using quantum Monte Carlo techniques. We compute the energy spectrum, residue, effective mass, and structural properties.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to provide updated evidence for managing stage I colon cancer (CC) post-surgery, focusing on recurrence rates and risk factors.
  • Despite low recurrence risk, some guidelines suggest intensive follow-up is unnecessary, but data on actual recurrence rates is limited.
  • The findings reveal a 5% recurrence rate, primarily systemic, with significant risk factors including tumor characteristics and patient demographics, suggesting a need for improved postoperative follow-up strategies.
View Article and Find Full Text PDF
Article Synopsis
  • The CMS experiment conducted a search for charge-parity violation in decays using proton-proton collision data from 2018, analyzing around 10 billion events with b hadrons decaying into charm hadrons.
  • The flavor of the neutral D meson was determined through the charge of pions in the reconstructed decays, and an asymmetry measurement in the decays was reported, taking into account various uncertainties.
  • This research marks the first asymmetry measurement by the CMS in the charm sector and the first to use a fully hadronic final state in such analyses.
View Article and Find Full Text PDF

Spectral operator representations.

NPJ Comput Mater

December 2024

Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

Machine learning in atomistic materials science has grown to become a powerful tool, with most approaches focusing on atomic geometry, typically decomposed into local atomic environments. This approach, while well-suited for machine-learned interatomic potentials, is conceptually at odds with learning complex intrinsic properties of materials, often driven by spectral properties commonly represented in reciprocal space (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

Time-dependent quantum/continuum modeling of plasmon-enhanced electronic circular dichroism.

J Chem Phys

December 2024

Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.

In this work, we present a multiscale real-time approach to study the plasmonic effects of a metal nanoparticle (NP) on the electronic circular-dichroism (ECD) spectrum of a chiral molecule interacting with it. The method is based on the time-evolution of the molecule's time-dependent wavefunction, expanded in the eigenstates of a perturbed Hamiltonian. A quantum description of the molecular system is coupled to a classical representation of the NP via a continuum model.

View Article and Find Full Text PDF

Nanohybrids of 2D Black Phosphorus with Phthalocyanines: Role of Interfacial Interactions in Heterostructure Development.

Chemistry

December 2024

Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy.

New 2D black phosphorus (bP)-phthalocyanine (Pc) nanohybrids have been synthesized by liquid phase exfoliation of black phosphorus crystals in the presence of two organic dyes: phthalocyanine (Pc) and manganese phthalocyanine (MnPc). The key role of the metal cation in the interfacial interaction between the organic dye and bP nanosheets was demonstrated by X-ray absorption spectroscopy and associated with an electron transfer between the metal cation Mn and bP nanosheets, which resembles a coordinative chemical bond. On the other hand, the interaction between bP nanosheets and pure phthalocyanine is governed by van der Waals forces.

View Article and Find Full Text PDF
Article Synopsis
  • The research introduces a real-time, time-dependent approach to analyze high-harmonic generation (HHG) signals in molecules by focusing on individual molecular orbital (MO) contributions.
  • It utilizes the time-dependent Schrödinger equation with complex energies to account for ionization and employs specialized Gaussian basis sets for calculating high-energy states.
  • The findings reveal how MO contributions correlate with laser pulse symmetries, affecting the HHG spectra of CO2 and H2O, and provide insights into the roles of different orbitals based on laser polarization directions.
View Article and Find Full Text PDF

The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.

View Article and Find Full Text PDF

In recent years, significant research efforts have been dedicated to finding efficient and safe alternatives to the currently used gadolinium (Gd)-based MRI contrast agents. Among the most explored alternatives are paramagnetic chelates of the Earth-abundant Mn, which form a prominent class of metal complexes. The design of Mn complexes with enhanced relaxation properties and improved safety profiles hinges on a delicate balance between thermodynamic and kinetic stability, as well as the presence of coordinated water molecules.

View Article and Find Full Text PDF

The first search for the Z boson decay to ττμμ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138  fb^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.

View Article and Find Full Text PDF

Using proton-proton collision data corresponding to an integrated luminosity of collected by the CMS experiment at , the decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the decay, is measured to be , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in and .

View Article and Find Full Text PDF

A search for collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged particles using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of sqrt[s]=13  TeV, corresponding to an integrated luminosity of 138  fb^{-1}. Jets are reconstructed with the anti-k_{T} algorithm with a distance parameter of 0.

View Article and Find Full Text PDF

Variational benchmarks for quantum many-body problems.

Science

October 2024

Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-the-art numerical approaches show limited accuracy and future algorithms or computational platforms, such as quantum computing, could provide improved accuracy.

View Article and Find Full Text PDF

Importance: Blood transfusions are commonly administered to patients with acute brain injury. The optimal hemoglobin transfusion threshold is uncertain in this patient population.

Objective: To assess the impact on neurological outcome of 2 different hemoglobin thresholds to guide red blood cell transfusions in patients with acute brain injury.

View Article and Find Full Text PDF

Stochastic Schrödinger equation for hot-carrier dynamics in plasmonic systems.

J Chem Phys

September 2024

Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.

We present a multiscale method coupling the theory of open quantum systems with real-time ab initio treatment of electronic structure to study hot-carrier dynamics in photoexcited plasmonic systems. We combine the Markovian Stochastic Schrödinger equation with an ab initio GW coupled to the Bethe-Salpeter (BSE) equation description of the electronic degrees of freedom, interacting with a metallic nanoparticle modeled classically according to the polarizable continuum model. We apply this methodology to study the effect of relaxation (T1) and pure dephasing (T2) times on the hot-carrier dynamics in a system composed of a quantum portion described at GW/BSE level, i.

View Article and Find Full Text PDF

Deep-Cavity Calix[4]naphth[4]arene Macrocycles: Synthesis, Conformational Features, and Solid-State Structures.

Molecules

August 2024

Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.

We recently introduced calix[]naphth[]arenes as a novel class of deep-cavity hybrid macrocycles constituted by phenol (n) and naphthalene (m) units. In this study, we report the synthesis, conformational analysis, spectroscopic properties, and solid-state structures of calix[4]naphth[4]arene () and its permethylated analog (), thereby expanding the calix[]naphth[]arene family. was synthesized through a 2 + 2 fragment coupling macrocyclization under acidic conditions, where the solvent played a crucial role in selectively forming the derivative.

View Article and Find Full Text PDF

The identification of human fire victims is a challenging task in forensic medicine. The heat-induced alterations of biological tissues can make the conventional anthropological analyses difficult. Even if the DNA profile of the victim is achieved, it is possible that no match can be found in a forensic DNA database, thus hindering positive identification.

View Article and Find Full Text PDF
Article Synopsis
  • Demand for computing power in major scientific experiments, like the CMS at CERN, is expected to significantly increase over the coming decades.
  • The implementation of coprocessors, particularly GPUs, in data processing workflows can enhance performance and efficiency, especially for machine learning tasks.
  • The Services for Optimized Network Inference on Coprocessors (SONIC) approach allows for improved use of coprocessors, demonstrating successful integration and acceleration of workflows across various environments without sacrificing throughput.
View Article and Find Full Text PDF

Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of sqrt[s]=13  TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3  fb^{-1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom.

View Article and Find Full Text PDF

A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum . This observable is measured in multijet events over the range of - based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 , corresponding to an integrated luminosity of 134 . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects.

View Article and Find Full Text PDF