140 results match your criteria: "Universita' degli Studi di Bari A. Moro[Affiliation]"

Introduction: The 5-HT(1A) receptors are implicated in mood disorders (anxiety, depression), in cognition, and in modulation of pain. Nearly 30 years of research in this field, there is still interest in developing new chemical entities capable of 5-HT(1A) receptor activation or blockade.

Areas Covered: This review article will highlight and review the research advances published in the patent literature between January 2007 and December 2011, giving emphasis to the medicinal chemist's standpoint.

View Article and Find Full Text PDF

Here we report the design, synthesis, and 5-HT(7) receptor affinity of a set of 1-(3-biphenyl)- and 1-(2-biphenyl)piperazines. The effect on 5-HT(7) affinity of various substituents on the second (distal) phenyl ring was analyzed. Several compounds showed 5-HT(7) affinities in the nanomolar range and >100-fold selectivity over 5-HT(1A) and adrenergic α(1) receptors.

View Article and Find Full Text PDF

Biosystems integration into an organic field-effect transistor (OFET) structure is achieved by spin coating phospholipid or protein layers between the gate dielectric and the organic semiconductor. An architecture directly interfacing supported biological layers to the OFET channel is proposed and, strikingly, both the electronic properties and the biointerlayer functionality are fully retained. The platform bench tests involved OFETs integrating phospholipids and bacteriorhodopsin exposed to 1-5% anesthetic doses that reveal drug-induced changes in the lipid membrane.

View Article and Find Full Text PDF

The COX-1 isoenzyme plays a significant role in a variety of diseases, as it catalyzes the bioprocesses behind many health problems. Among the diarylheterocycle class of COX inhibitors, the isoxazole ring has been widely used as a central heterocycle for the preparation of potent and selective COX-1 inhibitors such as P6 [3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole]. The role of the isoxazole nucleus in COX-1 inhibitor selectivity has been clarified by preparing a set of new diarylheterocycles with various heterocycle cores.

View Article and Find Full Text PDF

Oxidative addition and reductive elimination are fundamental processes in transition-metal chemistry. New interest in this field has been generated by the exploitation of platinum(IV) complexes as antitumor drugs. The two extra ligands can be used to render these species more resistant to attack by biological nucleophiles compared to their platinum(II) counterparts, to anchor additional pharmacologically active moieties, or, finally, to target the drug to specific sites by conferring responsiveness to some type of chemotaxis.

View Article and Find Full Text PDF

COX-1 plays a previously unrecognized part in the neuroinflammation. Genetic ablation or pharmacological inhibition of COX-1 activity attenuates the inflammatory response and neuronal loss. In this context, the effects of selective COX-1 inhibitors (P6, P10, SC-560, aspirin) and coxibs (celecoxib and etoricoxib) on LPS-stimulated microglial cell function (a worldwide accepted neuroinflammation model) were investigated, and the effects on COX-1/COX-2, cPGES mRNA and iNOS expression, PGE(2) and NO production and NF-κB activation by IκBα phosphorylation were evaluated.

View Article and Find Full Text PDF

Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-activated transcription factors that govern lipid and glucose homeostasis playing a central role in cardiovascular disease, obesity, and diabetes. These receptors show a high degree of stereoselectivity towards several classes of drugs. This review provides an overview of most papers reporting the influence of stereochemistry on PPAR activation.

View Article and Find Full Text PDF

A highly stereo- and regioselective functionalisation of chiral non-racemic aziridines is reported. By starting from a parent enantioenriched aziridine and finely tuning the reaction conditions, it is possible to address the regio- and stereoselectivity of the lithiation/electrophile trapping sequence, thereby allowing the preparation of highly enantioenriched functionalised aziridines. From chiral N-alkyl trans-2,3-diphenylaziridines (S,S)-1 a,b, two differently configured chiral aziridinyllithiums could be generated (trans-1 a,b-Li in toluene and cis-1 a,b-Li in THF), thus disclosing a solvent-dependent reactivity that is useful for the synthesis of chiral tri-substituted aziridines with different stereochemistry.

View Article and Find Full Text PDF

Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT(7) receptor is the most recently classified member of the serotonin receptor family.

View Article and Find Full Text PDF

The 5-HT(1A) receptor subtype is the most thoroughly studied serotonin receptor subtype. We report here the design, synthesis and characterization of two new fluorescent ligands for the 5-HT(1A) receptor. The new 1-arylpiperazine-based red-emitting fluorescent compound 6 displayed good binding affinity at the 5-HT(1A) receptor (K(i)=35 nM) and was able to label specifically the human 5-HT(1A) receptor stably expressed in CHO cells visualized using confocal laser scanning microscopy.

View Article and Find Full Text PDF

Here we describe the design, synthesis, and evaluation of physicochemical and pharmacological properties of D(4) dopamine receptor ligands related to N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (2). Structural features were incorporated to increase affinity for the target receptor, to improve selectivity over D(2) and σ(1) receptors, to enable labeling with carbon-11 or fluorine-18, and to adjust lipophilicity within the range considered optimal for brain penetration and low nonspecific binding. Compounds 7 and 13 showed the overall best characteristics: nanomolar affinity for the D(4) receptor, >100-fold selectivity over D(2) and D(3) dopamine receptors, 5-HT(1A), 5-HT(2A), and 5-HT(2C) serotonin receptors and σ(1) receptors, and log P = 2.

View Article and Find Full Text PDF

Importance Of The Field: The 5-HT(7) receptors are discretely localized within the CNS (thalamus, hypothalamus, limbic and cortical regions). The 5-HT(7) receptors are also present in smooth muscle cells from blood vessels and have been reported in gastrointestinal tract as well as in rat lumbar dorsal root and sympathetic ganglia. The 5-HT(7) receptors have been implicated in depression, disorders related to circadian rhythms, pain and migraine.

View Article and Find Full Text PDF

For over 30 years cisplatin has been one of the most active antitumour agents in clinical use, nevertheless research for overcoming cisplatin toxicity and resistance or for improving its efficacy has never ceased. In this context we have recently proposed dinuclear Pt complexes with bridging geminal bisphosphonates as novel Pt-prodrugs with potential activity at the bone surface after embedment in inorganic matrices and implantation at the tumour site. In the present paper we report the synthesis and full characterization of four new platinum complexes having a dinuclear structure with a bisphosphonate (2-ammonium-1-hydroxyethane-1,1-diyl-bisphosphonate or 3-ammonium-1-hydroxypropane-1,1-diyl-bisphosphonate, AHBP-H and PAM-H, respectively) acting as a bridging ligand between two platinum moieties (cis-[Pt(NH(3))(2)](2+), directly related to cisplatin, and [Pt(cis-1,4-DACH)](2+), known to be able to overcome the cisplatin resistance).

View Article and Find Full Text PDF

Novel compounds were prepared in fair to good yields as human beta(3)-adrenoceptor (beta(3)-AR) agonists. In particular, aryloxypropanolamines 7 a-d (EC(50)=0.57-2.

View Article and Find Full Text PDF