1,471 results match your criteria: "UniversitA della Calabria[Affiliation]"

Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.

View Article and Find Full Text PDF

Eutectogel-Based Drug Delivery: An Innovative Approach for Atenolol Administration.

Pharmaceutics

December 2024

Dipartimento di Farmacia, Salute e Scienze della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.

Hypertension affects 32% of adults worldwide, leading to a significant global consumption of cardiovascular medications. Atenolol, a β-adrenergic receptor blocker, is widely prescribed for cardiovascular diseases such as hypertension, angina pectoris, and myocardial infarction. According to the Biopharmaceutics Classification System (BCS), atenolol belongs to Class III, characterized by high solubility but low permeability.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Jumping Dynamics of Cyanomethyl Radicals on Corrugated Graphene/Ru(0001) Substrates.

J Phys Chem C Nanomater Interfaces

December 2024

Instituto IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain.

Graphene adsorbed on Ru(0001) has been widely used as a template for adsorbing and isolating molecules, assembling organic-molecule structures with desired geometric and electronic properties and even inducing chemical reactions that are challenging to achieve in the gas phase. To fully exploit the potential of this substrate, for example, by being able to tune a graphene-based catalyst to perform optimally under specific conditions, it is crucial to understand the factors and mechanisms governing the molecule-substrate interaction. To contribute to this effort, we have conducted a combined experimental and theoretical study of the adsorption of cyanomethyl radicals (-CHCN) on this substrate below room temperature by performing scanning tunneling microscopy experiments and density functional theory simulations.

View Article and Find Full Text PDF

Dry synthesis of bi-layer nanoporous metal films as plasmonic metamaterial.

Nanophotonics

March 2024

Istituto Italiano di Tecnologia, Via Morego 30, 16136 Genova, Italy.

Nanoporous metals are a class of nanostructured materials finding extensive applications in multiple fields thanks to their unique properties attributed to their high surface area and interconnected nanoscale ligaments. They can be prepared following different strategies, but the deposition of an arbitrary pure porous metal is still challenging. Recently, a dry synthesis of nanoporous films based on the plasma treatment of metal thin layers deposited by physical vapour deposition has been demonstrated, as a general route to form pure nanoporous films from a large set of metals.

View Article and Find Full Text PDF

Assessing Olive Oil Quality Using Different DNA-Based Methods.

Plants (Basel)

November 2024

Dipartimento di Biologia, Ecologia e Scienze della Terra (DiBEST), Università della Calabria, Via Ponte P. Bucci, 87036 Arcavacata di Rende, Italy.

Olive oil is appreciated worldwide for its unique nutritional and organoleptic properties. It is rich in unsaturated fatty acids and antioxidants, which are well-known for their health benefits. The qualitative characteristics of olive oil can be adversely affected by various biotic and abiotic factors.

View Article and Find Full Text PDF

Electron delocalization in a 2D Mott insulator.

Nat Commun

November 2024

Departamento Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.

The prominent role of electron-electron interactions in two-dimensional (2D) materials is at the origin of a great variety of fermionic correlated states reported in the literature. Artificial van der Waals heterostructures comprising single layers of highly correlated insulators allow one to explore the effect of the subtle interlayer interaction in the way electrons interact. We study the temperature dependence of the electronic properties of a van der Waals heterostructure composed of a single-layer Mott insulator lying on a metallic substrate by performing quasi-particle interference (QPI) maps.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates chitosan-based membranes mixed with eco-friendly deep eutectic solvents (DESs) to improve the separation of methanol and methyl-butyl ether via pervaporation.
  • - Results showed that adding DESs boosted the membranes' selective permeability for methanol by up to three times compared to regular chitosan membranes, with performance influenced by feed temperature.
  • - Crosslinking the membranes with glutaraldehyde enhanced their selectivity, highlighting the potential of DESs to improve biopolymer membranes for efficient and environmentally friendly separations.
View Article and Find Full Text PDF

Concerns regarding water contamination are escalating due to the increasing presence of all types of pollutants in water sources, which pose serious health risks to humans and wildlife, disrupt ecosystems, and compromise the safety of drinking water. Addressing water contamination requires stringent regulations and increased public awareness, but especially, it requires the development of highly effective new technologies to decontaminate those aquatic environments that have been already polluted over the past few decades. Since the emergence of metal-organic frameworks (MOFs), their use has been proposed in a multitude of fields, given their unique physicochemical properties, and one of the fields where a realistic application can be expected in the near future is water remediation.

View Article and Find Full Text PDF

New Delhi metallo-β-lactamase 1 (NDM-1) is an enzyme involved in the drug resistance of many bacteria against most of the widely adopted antibiotics, such as penicillins, cephalosporins, and carbapenems. Consequently, inhibiting NDM-1 swiftly has gained significant interest as a strategy to counteract this bacterial defense mechanism, thereby restoring the effectiveness of antibiotics. Among the inhibitors tested against the enzyme, ebselen () showed particularly promising results.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the explosive volcanic activity at Stromboli around 77-75 ka, describing it as the largest eruptive cycle in the area's history, with significant deposits found in the surrounding regions.
  • The research combines techniques from various scientific disciplines to understand the pre-eruptive processes and magma system architecture, highlighting the differences from current eruptions, particularly in terms of closed-system conditions.
  • It suggests that explosive events were triggered by rapid depressurization due to changes in the shallow conduit and potential lateral collapses, allowing deeper magma to rise.
View Article and Find Full Text PDF

Biodegradable alternatives to classic solid-state components are rapidly taking place in front-end photonic systems like metamaterials, meta-surfaces and photonic crystals. From this point of view, numerous solutions have been proposed involving eco-friendly compounds. Among them, the Luria Bertani agar (LBA) growth medium has been recently proposed as a functional option with the remarkable advantage of allowing the growth of fluorescent protein expressing bacteria.

View Article and Find Full Text PDF

A search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140  fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13  TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.

View Article and Find Full Text PDF
Article Synopsis
  • - The ATLAS experiment at the LHC conducted a search for long-lived particles (LLPs) using a large dataset (140 fb^{-1}) from proton-proton collisions at 13 TeV, focusing on LLPs with masses from 5 to 55 GeV that decay within the inner detector.
  • - The study considered scenarios where LLPs are produced from exotic Higgs boson decays and models involving axionlike particles (ALPs).
  • - No significant findings above expected background levels were detected, leading to the establishment of upper limits on various production rates involving the Higgs boson and the top quark related to LLPs and ALPs.
View Article and Find Full Text PDF

Biofilms are mucilaginous-organic layers produced by microbial activity including viruses. Growing biofilms form microbial mats which enhance sediment stability by binding particles with extracellular polymeric substances and promoting growth through nutrient cycling and organic matter accumulation. They preferentially develop at the sediment-water interface of both marine and non-marine environments, and upon the growing surfaces of modern tufa and travertine.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the associated production of Higgs and W bosons, focusing on how the relative signs of the Higgs couplings to W and Z bosons impact the process.
  • Two specific searches were conducted using large amounts of collision data from the LHC to analyze different coupling scenarios: one for opposite-sign couplings and another for same-sign (standard model-like) couplings.
  • The results significantly exclude the opposite-sign coupling hypothesis and set a strict upper limit on the production rate of this process compared to standard model predictions.
View Article and Find Full Text PDF

Demonstrating the non-Abelian Ising anyon statistics of Majorana zero modes in a physical platform still represents a major open challenge in physics. We here show that the linear low-frequency charge conductance of a Majorana interferometer containing a floating superconducting island can reveal the topological spin of quantum edge vortices. The latter are associated with chiral Majorana fermion edge modes and represent "flying" Ising anyons.

View Article and Find Full Text PDF

Interdisciplinary Animal Research Ethics-Challenges, Opportunities, and Perspectives.

Animals (Basel)

October 2024

Institute for Ethics, History and Philosophy of Medicine, Hannover Medical School, 30625 Hannover, Germany.

Can nonhuman animals be used for the benefit of humans in a scientifically and morally justified manner and, if yes, how? Based on our own experiences as scholars from various academic backgrounds, we argue that this question can only be answered as an interdisciplinary and international endeavor, considering insights from research ethics and animal ethics as well as scientific and legal aspects. The aim of this article is to contribute to the foundation of the emerging field of animal research ethics. In doing so, we describe the following seven phases of animal research experiments: ethical, legal and social presumptions (phase 0), planning (phase I), review (phase II), conduct of experiments (phase III), publication/dissemination (phase IV), further exploitation of results (phase V), and evaluation (phase VI).

View Article and Find Full Text PDF

Photoactivated chemotherapy (PACT) is a form of target-oriented cancer therapy that exploits light of the proper wavelength to selectively activate the drug. Among the prodrugs used for this purpose, ruthenium-based complexes are particularly interesting, as when irradiated by light, they can release ligands by forming aquo-complexes able to bind DNA in both single and double strand fashions, causing its distortion. Using as model system a Ru(II) polypyridyl complex that has been demonstrated to be a promising photochemotherapeutic agent, all of the key aspects of the photoinduced solvolysis process and subsequent DNA interaction have been scrutinized using density functional theory (DFT) and time-dependent-DFT (TDDFT).

View Article and Find Full Text PDF

This work presents a novel method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in saliva samples using solid phase microextraction (SPME) coupled with gas chromatography-triple quadrupole mass spectrometry (GC-QqQ-MS). The protocol utilizes the latest commercially available overcoated fiber (PDMS/DVB/PDMS) for direct immersion extraction of the target analytes, enabling the determination of thirteen PAHs, including low-volatile compounds. The SPME extraction method was optimized using a central composite design (CCD).

View Article and Find Full Text PDF

Several copper-ligands, including 1,10-phenanthroline (Phen), have been investigated for anticancer purposes based on their capacity to bind excess copper (Cu) in cancer tissues and form redox active complexes able to catalyse the formation of reactive oxygen species (ROS), ultimately leading to oxidative stress and cell death. Glutathione (GSH) is a critical compound as it is highly concentrated intracellularly and can reduce and dissociate copper(II) from the ligand forming poorly redox-active copper(I)-thiolate clusters. Here we report that Cu-Phen speciation evolves in physiologically relevant GSH concentrations.

View Article and Find Full Text PDF

Herewith, we propose a comprehensive study of the vibrational response of chemical doping of free-standing graphene (Gr). Complementary insights on the increased metallicity have been demonstrated by the emerging plasmon excitation in the upper Dirac cone, observed by inelastic electron scattering and core-level photoemission. The electron migration in the π* upper Dirac band unveils an electron-phonon coupling of contaminant-free K-doped Gr, as evidenced by advanced micro-Raman spectroscopy in ultrahigh vacuum ambient.

View Article and Find Full Text PDF

This Letter presents results from a combination of searches for Higgs boson pair production using 126-140  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV recorded with the ATLAS detector. At 95% confidence level (CL), the upper limit on the production rate is 2.9 times the standard model (SM) prediction, with an expected limit of 2.

View Article and Find Full Text PDF

This Letter presents the first study of the energy dependence of diboson polarization fractions in WZ→ℓνℓ^{'}ℓ^{'}(ℓ,ℓ^{'}=e,μ) production. The dataset used corresponds to an integrated luminosity of 140  fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally polarized bosons are defined.

View Article and Find Full Text PDF