34 results match your criteria: "Univ. of Western Australia[Affiliation]"

Developing drought-smart, ready-to-grow future crops.

Plant Genome

March 2023

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry Univ., Fuzhou, 350002, China.

Breeding crop plants with increased yield potential and improved tolerance to stressful environments is critical for global food security. Drought stress (DS) adversely affects agricultural productivity worldwide and is expected to rise in the coming years. Therefore, it is vital to understand the physiological, biochemical, molecular, and ecological mechanisms associated with DS.

View Article and Find Full Text PDF

Bread wheat (Triticum aestivum L.) is one of humanity's most important staple crops, characterized by a large and complex genome with a high level of gene presence-absence variation (PAV) between cultivars, hampering genomic approaches for crop improvement. With the growing global population and the increasing impact of climate change on crop yield, there is an urgent need to apply genomic approaches to accelerate wheat breeding.

View Article and Find Full Text PDF

In the last decade, more than 70 quantitative trait loci (QTL) related to soybean [Glycine max (L.) Merr.] partial resistance (PR) against Phytophthora sojae have been identified by genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Since the first reported crop pangenome in 2014, advances in high-throughput and cost-effective DNA sequencing technologies facilitated multiple such studies including the pangenomes of oilseed rape (Brassica napus L.), soybean [Glycine max (L.) Merr.

View Article and Find Full Text PDF

Achieving yield potential in chickpea (Cicer arietinum L.) is limited by many constraints that include biotic and abiotic stresses. Combining next-generation sequencing technology with advanced statistical modeling has the potential to increase genetic gain efficiently.

View Article and Find Full Text PDF

Common bean (Phaseolus vulgaris L.) is important in African diets for protein, iron (Fe), and zinc (Zn), but traditional cultivars have long cooking time (CKT), which increases the time, energy, and health costs of cooking. Genomic selection was used to predict genomic estimated breeding values (GEBV) for grain yield (GY), CKT, Fe, and Zn in an African bean panel of 358 genotypes in a two-stage analysis.

View Article and Find Full Text PDF

Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding.

Plant Genome

March 2022

Div. of Plant Sciences and National Ctr. for Soybean Biotechnology, Univ. of Missouri, Columbia, MO, USA.

The gene content of plants varies between individuals of the same species due to gene presence/absence variation, and selection can alter the frequency of specific genes in a population. Selection during domestication and breeding will modify the genomic landscape, though the nature of these modifications is only understood for specific genes or on a more general level (e.g.

View Article and Find Full Text PDF

Significance: Speckle noise is an inherent limitation of optical coherence tomography (OCT) images that makes clinical interpretation challenging. The recent emergence of deep learning could offer a reliable method to reduce noise in OCT images.

Aim: We sought to investigate the use of deep features (VGG) to limit the effect of blurriness and increase perceptual sharpness and to evaluate its impact on the performance of OCT image denoising (DnCNN).

View Article and Find Full Text PDF

Nitrous oxide (N O) is a potent greenhouse gas that is primarily emitted from agriculture. Sampling limitations have generally resulted in discontinuous N O observations over the course of any given year. The status quo for interpolating between sampling points has been to use a simple linear interpolation.

View Article and Find Full Text PDF

The application of bacterial cellulose (BC) as a wrapping material for vacuum-packaged beef was studied and compared against unwrapped beef for up to 3 weeks. The impact of BC wrap on the weight loss, purge accumulation, and drip loss were assessed along with low-field nuclear magnetic resonance, physicochemical, microbiological, and sensorial evaluations. The BC wrap significantly (P < 0.

View Article and Find Full Text PDF

Significance: Optical coherence tomography (OCT) provides cross-sectional and volumetric images of backscattering from biological tissue that reveal the tissue morphology. The strength of the scattering, characterized by an attenuation coefficient, represents an alternative and complementary tissue optical property, which can be characterized by parametric imaging of the OCT attenuation coefficient. Over the last 15 years, a multitude of studies have been reported seeking to advance methods to determine the OCT attenuation coefficient and developing them toward clinical applications.

View Article and Find Full Text PDF

Optically scattering phantoms composed of silica microspheres embedded in an optically clear silicone matrix were manufactured using a previously developed method. Multiple problems, such as sphere aggregation, adsorption to the cast, and silicone shrinkage, were, however, frequently encountered. Solutions to these problems were developed and an improved method, incorporating these solutions, is presented.

View Article and Find Full Text PDF

Cytoplasmic male sterility (CMS) has been exploited in the commercial pigeonpea [Cajanus cajan (L.) Millsp.] hybrid breeding system; however, the molecular mechanism behind this system is unknown.

View Article and Find Full Text PDF

To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project.

View Article and Find Full Text PDF

Human motor cortex is capable of rapid and long-lasting reorganization, evident globally, as shifts in body part representations, and at the level of individual muscles as changes in corticospinal excitability. Representational shifts provide an overview of how various body parts reorganize relative to each other but do not tell us whether all muscles in a given body part reorganize in the same manner and to the same extent. Transcranial magnetic stimulation (TMS) provides information about individual muscles and can therefore inform us about the uniformity of plastic changes within a body part.

View Article and Find Full Text PDF

Real-time surgical simulation is becoming an important component of surgical training. To meet the real-time requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate.

View Article and Find Full Text PDF

This study aimed to determine the importance of repeated increases in blood flow to conduit artery adaptation, using an exercise-independent repeated episodic stimulus. Recent studies suggest that exercise training improves vasodilator function of conduit arteries via shear stress-mediated mechanisms. However, exercise is a complex stimulus that may induce shear-independent adaptations.

View Article and Find Full Text PDF

For much of their childhood and adult life, the twelve surviving children of William the Silent were separated linguistically and geographically. Many of the children forged important relationships with male primary carers who were not their biological parents. This paper explores the children's correspondence with their biological father William and with paternal figures to understand competing forms of familial authority among William's children.

View Article and Find Full Text PDF

Transferrin receptor (TFR) 1 and 2 are expressed in the liver; TFR1 levels are regulated by cellular iron levels while TFR2 levels are regulated by transferrin saturation. The aims of this study were to 1) determine the relative importance of TFR1 and TFR2 in transferrin-bound iron (TBI) uptake by HuH7 human hepatoma cells and 2) characterize the role of metal-transferrin complexes in the regulation of these receptors. TFR expression was altered by 1) incubation with metal-transferrin (Tf) complexes, 2) TFR1 and TFR2 small interfering RNA knockdown, and 3) transfection with a human TFR2 plasmid.

View Article and Find Full Text PDF

Mechanical efficiency of limb swing during walking and running in guinea fowl (Numida meleagris).

J Appl Physiol (1985)

May 2009

School of Sport Science, Exercise & Health, The Univ. of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.

Understanding the mechanical determinants of the energy cost of limb swing is crucial for refining our models of locomotor energetics, as well as improving treatments for those suffering from impaired limb-swing mechanics. In this study, we use guinea fowl (Numida meleagris) as a model to explore whether mechanical work at the joints explains limb-swing energy use by combining inverse dynamic modeling and muscle-specific energetics from blood flow measurements. We found that the overall efficiencies of the limb swing increased markedly from walking (3%) to fast running (17%) and are well below the usually accepted maximum efficiency of muscle, except at the fastest speeds recorded.

View Article and Find Full Text PDF

Responsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain.

J Appl Physiol (1985)

September 2007

Physiology, School of Biomedical, Biomolecular, and Chemical Sciences, Univ. of Western Australia, 35 Stirling Hwy., Crawley, Perth, Western Australia, 6009, Australia.

In vivo, breathing movements, including tidal and deep inspirations (DIs), exert a number of beneficial effects on respiratory system responsiveness in healthy humans that are diminished or lost in asthma, possibly as a result of reduced distension (strain) of airway smooth muscle (ASM). We used bronchial segments from pigs to assess airway responsiveness under static conditions and during simulated tidal volume oscillations with and without DI and to determine the roles of airway stiffness and ASM strain on responsiveness. To simulate airway dilations during breathing, we cycled the luminal volume of liquid-filled segments.

View Article and Find Full Text PDF

Absence of selective brain cooling in unrestrained baboons exposed to heat.

Am J Physiol Regul Integr Comp Physiol

May 2007

Physiology, School of Biomedical, Biomolecular and Chemical Science, Univ of Western Australia, Crawley, Australia.

To test whether baboons are capable of implementing selective brain cooling, we measured, every 5 min, the temperature in their hypothalamus, carotid arterial bloodstream, and abdominal cavity. The baboons were unrestrained and exposed to 22 degrees C for 7 days and then to a cyclic environment with 15 degrees C at night and 35 degrees C during the day for a further 7 days. During the latter 7 days some of the baboons also were exposed to radiant heat during the day.

View Article and Find Full Text PDF

The regulation of intracellular pH during intense muscle contractions occurs via a number of different transport systems [e.g., monocarboxylate transporters (MCTs)] and via intracellular buffering (beta m(in vitro)).

View Article and Find Full Text PDF