17 results match your criteria: "Univ. of North Texas Health Science Center[Affiliation]"

Water is crucial to plant growth, development, and environmental adaptation. Water stress triggers cytosolic Ca ([Ca ] ) increases, and the osmosensor OSCA1 (REDUCED-HYPEROSMOLALITY-INDUCED-[Ca ] -INCREASE 1), a member of the OSCA family, perceives the initial water stress and governs its downstream responses. OSCA homologs exist in eukaryotes and largely radiate in higher plants.

View Article and Find Full Text PDF

The present study was conducted to determine whether and how store-operated Ca(2+) entry (SOCE) in glomerular mesangial cells (MCs) was altered by high glucose (HG) and diabetes. Human MCs were treated with either normal glucose or HG for different time periods. Cyclopiazonic acid-induced SOCE was significantly greater in the MCs with 7-day HG treatment and the response was completely abolished by GSK-7975A, a selective inhibitor of store-operated Ca(2+) channels.

View Article and Find Full Text PDF

Altered regulation of the rostral ventrolateral medulla in hypertensive obese Zucker rats.

Am J Physiol Heart Circ Physiol

July 2011

Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.

Obese Zucker rats (OZR) have elevated sympathetic nerve activity (SNA) and mean arterial pressure (MAP) compared with lean Zucker rats (LZR). We examined whether altered tonic glutamatergic, angiotensinergic, or GABAergic inputs to the rostral ventrolateral medulla (RVLM) contribute to elevated SNA and MAP in OZR. Male rats (14-18 wk) were anesthetized with urethane (1.

View Article and Find Full Text PDF

This study sought to test the hypothesis that orthostasis-induced cerebral hypoperfusion would be less severe in physically active elderly humans (ACT group) than in sedentary elderly humans (SED group). The peak O(2) uptake of 10 SED (67.1 +/- 1.

View Article and Find Full Text PDF

Previous studies have demonstrated an increase in the arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) during isolated activation of the muscle metaboreflex with postexercise muscle ischemia (PEMI). However, the increased ABR-MSNA control does not appear to manifest in an enhancement in the ABR control of arterial blood pressure (BP), suggesting alterations in the transduction of MSNA into a peripheral vascular response and a subsequent ABR-mediated change in BP. Thus we examined the operating gains of the neural and peripheral arcs of the ABR and their interactive relationship at rest and during muscle metaboreflex activation.

View Article and Find Full Text PDF

Ca(+) influx across the plasma membrane is a major component of mesangial cell (MC) response to vasoconstrictors. Polycystin 2 (PC2), the protein product of the gene mutated in type 2 autosomal dominant polycystic kidney disease, has been shown to function as a nonselective cation channel in a variety of cell types. The present study was performed to test the hypothesis that PC2 and its binding partners constitute a Ca(2+)-permeable channel and contribute to ANG II-induced Ca(2+) signaling in MCs.

View Article and Find Full Text PDF

17beta-Estradiol (E(2)) reduces oxidative stress-induced depolarization of mitochondrial membrane potential (MMP) in cultured human lens epithelial cells (HLE-B3). The mechanism by which the nongenomic effects of E(2) contributed to the protection against mitochondrial membrane depolarization was investigated. Mitochondrial membrane integrity is regulated by phosphorylation of BAD, and it is known that phosphorylation of Ser(112) inactivates BAD and prevents its participation in the mitochondrial death pathway.

View Article and Find Full Text PDF

We sought to investigate arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) in the transition from rest to steady-state dynamic exercise. This was accomplished by assessing the relationship between spontaneous variations in diastolic blood pressure (DBP) and MSNA at rest and during the time course of reaching steady-state arm cycling at 50% peak oxygen uptake (VO(2peak)). Specifically, DBP-MSNA relations were examined in eight subjects (25 +/- 1 yr) at the start of unloaded arm cycling and then during the initial and a later period of arm cycling once the 50% VO(2peak) work rate was achieved.

View Article and Find Full Text PDF

Studies tested the hypothesis that myocardial ischemia induces increased paraspinal muscular tone localized to the T(2)-T(5) region that can be detected by palpatory means. This is consistent with theories of manual medicine suggesting that disturbances in visceral organ physiology can cause increases in skeletal muscle tone in specific muscle groups. Clinical studies in manual and traditional medicine suggest this phenomenon occurs during episodes of myocardial ischemia and may have diagnostic potential.

View Article and Find Full Text PDF

We sought to examine the regulation of cerebral blood flow during 10 min of recovery from mild, moderate, and heavy cycling exercise by measuring middle cerebral artery blood velocity (MCA V). Transfer function analyses between changes in arterial blood pressure and MCA V were used to assess the frequency components of dynamic cerebral autoregulation (CA). After mild and moderate exercise, the decreases in mean arterial pressure (MAP) and mean MCA V (MCA Vm) were small.

View Article and Find Full Text PDF

Oxidative stress reversibly inactivates myocardial enzymes during cardiac arrest.

Am J Physiol Heart Circ Physiol

January 2007

Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.

Oxidative stress during cardiac arrest may inactivate myocardial enzymes and thereby exacerbate ischemic derangements of myocardial metabolism. This study examined the impact of cardiac arrest on left ventricular enzymes. Beagles were subjected to 5 min of cardiac arrest and 5 min of open-chest cardiac compressions (OCCC) before epicardial direct current countershocks were applied to restore sinus rhythm.

View Article and Find Full Text PDF

The cardiac enkephalin, methionine-enkephalin-arginine-phenylalanine (MEAP), alters vagally induced bradycardia when introduced by microdialysis into the sinoatrial (SA) node. The responses to MEAP are bimodal; lower doses enhance bradycardia and higher doses suppress bradycardia. The opposing vagotonic and vagolytic effects are mediated, respectively, by delta(1) and delta(2) phenotypes of the same receptor.

View Article and Find Full Text PDF

Repeated delta1-opioid receptor stimulation reduces delta2-opioid receptor responses in the SA node.

Am J Physiol Heart Circ Physiol

November 2006

Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth TX 76107, USA.

Ultra-low-dose methionine-enkephalin-arginine-phenylalanine improves vagal transmission (vagotonic) and decreases heart rate via delta(1)-opioid receptors within the sinoatrial (SA) node. Higher doses activate delta(2)-opioid receptors, interrupt vagal transmission (vagolytic), and reduce the bradycardia. Preconditioning-like occlusion of the nodal artery produced a vagotonic response that was reversed by the delta(1)-antagonist 7-benzylidenaltrexone (BNTX).

View Article and Find Full Text PDF

Familial hypertrophic cardiomyopathy is a disease characterized by left ventricular and/or septal hypertrophy and myofibrillar disarray. It is caused by mutations in sarcomeric proteins, including the ventricular isoform of myosin regulatory light chain (RLC). The E22K mutation is located in the RLC Ca(2+)-binding site.

View Article and Find Full Text PDF

Mesangial cells are located within glomerular capillary loops and contribute to the physiological regulation of glomerular hemodynamics. The function of mesangial cells is controlled by a variety of ion channels in the plasma membrane, including nonselective cation channels, receptor-operated Ca2+ channels, and recently identified store-operated Ca2+ channels. Although the significance of these channels has been widely acknowledged, their molecular identities are still unknown.

View Article and Find Full Text PDF

Nitric oxide contributes to right coronary vasodilation during systemic hypoxia.

Am J Physiol Heart Circ Physiol

March 2005

Department of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA.

As arterial partial pressure of O(2) (Pa(O(2))) is reduced during systemic hypoxia, right ventricular (RV) work and myocardial O(2) consumption (MVo(2)) increase. Mechanisms responsible for maintaining RV O(2) demand/supply balance during hypoxia have not been delineated. To address this problem, right coronary (RC) blood flow and RV O(2) extraction were measured in nine conscious, instrumented dogs exposed to normobaric hypoxia.

View Article and Find Full Text PDF