9 results match your criteria: "Univ. of Jena[Affiliation]"

Purpose: To measure fundus autofluorescence (FAF) lifetimes and peak emission wavelengths (PEW) of subretinal drusenoid deposits (SDD) in age-related macular degeneration (AMD) and their development over time.

Methods: Fluorescence lifetime imaging ophthalmoscopy (FLIO) was performed in 30 eyes with optical coherence tomography (OCT)-confirmed early or intermediate AMD and SDD. Contrasts of mean lifetimes in short- (SSC) and long-wavelength channels (LSC), PEW, and relative fluorescence intensity were determined as differences of the respective measures at individual SDD and their environment.

View Article and Find Full Text PDF

Fluorescence lifetime imaging ophthalmoscopy (FLIO) provides information on fluorescence lifetimes in two spectral channels as well as the peak emission wavelength (PEW) of the fluorescence. Here, we combine these measures in an integral three-dimensional lifetime-PEW metric vector and determine a normal range for this vector from measurements in young healthy subjects. While for these control subjects 97 (±8) % (median (interquartile range)) of all para-macular pixels were covered by this normal vector range, it was 67 (±55) % for the elderly healthy, 38 (±43) % for age-related macular degeneration (AMD)-suspect subjects, and only 6 (±4) % for AMD patients.

View Article and Find Full Text PDF

Purpose: To investigate the spectral characteristics of fundus autofluorescence (FAF) in AMD patients and controls.

Methods: Fundus autofluorescence spectral characteristics was described by the peak emission wavelength (PEW) of the spectra. Peak emission wavelength (PEW) was derived from the ratio of FAF recordings in two spectral channels at 500-560 nm and 560-720 nm by fluorescence lifetime imaging ophthalmoscopy.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to observe changes of the retinal pigment epithelium (RPE) on the transition from dysmorphia to atrophy in age-related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO).

Methods: Multimodal imaging including color fundus photography (CFP), optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, and FLIO was performed in 40 eyes of 37 patients with intermediate AMD and no evidence for geographic atrophy or macular neovascularization (mean age = 74.2 ± 7.

View Article and Find Full Text PDF

Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mouse.

Am J Physiol Renal Physiol

September 2013

Dept. of Internal Medicine III, Univ. Hospital Jena, Univ. of Jena, Erlanger Allee 101, Jena D-07740, Germany.

Podocyte damage and accumulation of advanced glycation end products (AGEs) are characteristics of diabetic nephropathy (DN). The pathophysiology of AGE-challenged podocytes, such as hypertrophy, apoptosis, and reduced cell migration, is closely related to the induction of the cell cycle inhibitor p27(Kip1) and to the inhibition of neuropilin 1 (NRP1). We have previously demonstrated that treatment with erythropoietin is associated with protective effects for podocytes in vitro.

View Article and Find Full Text PDF