3 results match your criteria: "Univ. Presbiteriana Mackenzie[Affiliation]"

We demonstrate a novel, compact and low-loss photonic crystal fiber modal Mach-Zehnder interferometer with potential applications to sensing and WDM telecommunications. By selectively collapsing a ~1-mm-long section of a hole next to the solid core, a pair of modes of the post-processed structure are excited and interfere at its exit. A modulation depth of up to ~13 dB and an insertion loss as low as 2.

View Article and Find Full Text PDF

Supercontinuum generation is demonstrated in a 5-cm-long water-core photonic crystal fiber pumped near water's zero-dispersion wavelength. Up to 500-nm spectral width (evaluated at -20 dB from the peak) is achieved, while spectral widths were over 4 times narrower with a bulk setup at the same wavelength and peak power, and over 3 times narrower if the PCF was pumped away from the zero-dispersion wavelength. The supercontinuum generation mechanisms for bulk and waveguide setups are compared and tuning of the zero-dispersion wavelength via waveguide dispersion is theoretically investigated.

View Article and Find Full Text PDF

We analytically investigate the existence of global and partial synchronism in neural networks where each node is represented by a phase oscillator. Partial synchronism, which is important to pattern recognition, can be caused by increasing the natural frequency of an oscillator and restricting the frequencies of others in certain ranges.

View Article and Find Full Text PDF