2 results match your criteria: "Univ. Box 453[Affiliation]"

Magnetic nanoparticle targeting in tumor areas is examined by an integrated consideration of the transport steps from the microcirculation to the vascular walls, through their pores and into the interstitium. Brownian, flow- and magnetically induced forces and fluxes are compared on the basis of order-of-magnitude estimates and numerical simulations. The main resistance to nanoparticle transport is found to be within the interstitium, since fluxes there are much smaller than the extravasation fluxes, and the latter are much smaller than the convective-diffusive ones within the microvasculature.

View Article and Find Full Text PDF

In the present study synovial fluid (SF) obtained from the stifle joint of healthy adult dogs and of dogs after cranial cruciate ligament rupture was analyzed regarding its rheological characteristics according to the condition of the joint. The viscoelastic and shear flow properties were measured at 25 and 38 degrees C. The results showed that the healthy SF exhibits practically temperature independent viscosity curve and satisfactory viscoelastic characteristics, i.

View Article and Find Full Text PDF