32 results match your criteria: "Umm Al-Qura University Makkah 21955 Saudi Arabia.[Affiliation]"

Anthraquinones are privileged chemical scaffolds that have been used for centuries in various therapeutic applications. The anthraquinone moiety forms the core of various anticancer agents. However, the emergence of drug-resistant cancers warrants the development of new anticancer agents.

View Article and Find Full Text PDF

Tyrosinase is a multifunctional glycosylated and copper-containing oxidase that is highly prevalent in plants and animals and plays a pivotal role in catalyzing the two key steps of melanogenesis: tyrosine's hydroxylation to dihydroxyphenylalanine (DOPA), and oxidation of the latter species to dopaquinone. Melanin guards against the destructive effects of ultraviolet radiation which is known to produce considerable pathological disorders such as skin cancer, among others. Moreover, the overproduction of melanin can create aesthetic problems along with serious disorders linked to hyperpigmented spots or patches on skin.

View Article and Find Full Text PDF

Cyanoformamides are ubiquitous as useful components for assembling key intermediates and bioactive molecules. The development of an efficient and simple approach to this motif is a challenge. Herein, we demonstrate the effectiveness of the I-DMSO oxidative system in the preparation of -arylcyanoformamides from -arylcyanothioformamides.

View Article and Find Full Text PDF

σ-hole and lone-pair (lp) hole interactions of trivalent pnicogen-bearing (ZF) compounds were comparatively scrutinized, for the first time, under field-free and external electric field (EEF) conditions. Conspicuously, the sizes of the σ-hole and lp-hole were increased by applying an EEF along the positive direction, while the sizes of both holes decreased through the reverse EEF direction. The MP2 energetic calculations of ZF⋯FH/NCH complexes revealed that σ-holes exhibited more impressive interaction energies compared to the lp-holes.

View Article and Find Full Text PDF

Interception of a dearomatized tertiary boronic ester, formed through a kinetically and thermodynamically favorable 1,2-metalate rearrangement/-S2' elimination of an activated -lithiated benzyl amine, in a [4+2] cycloaddition or 1,3-borotopic shift has been investigated by density functional theory (DFT). Although superacitvated "naked" Li was found to greatly promote 1,3-borotopic shift, the diastereoselective [4+2] cycloaddition was favored. It was revealed that the factor that controls the diastereoselectivity was the steric bulk provided by the diene, which is in agreement with experimental diastereoselectivity.

View Article and Find Full Text PDF

With the aim of a reliable biosensing exhibiting enhanced sensitivity and selectivity, this study demonstrates a dopamine (DA) sensor composed of conductive poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) conformally coated with porphyrin-based metal-organic framework nanocrystals (MOF-525). The MOF-525 serves as an electrocatalytic surface, while the PEDOT NTs act as a charge collector to rapidly transport the electron from MOF nanocrystals. Bundles of these particles form a conductive interpenetrating network film that together: (i) improves charge transport pathways between the MOF-525 regions and (ii) increases the electrochemical active sites of the film.

View Article and Find Full Text PDF