2,876 results match your criteria: "Ulsan National Institute of Science and Technology UNIST.[Affiliation]"

Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.

View Article and Find Full Text PDF

Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.

View Article and Find Full Text PDF

Proteins, inherently biocompatible and biodegradable, face a challenge in forming stable hydrogels without external chemical crosslinkers. Here, we construct a ring-shaped trimeric SpyTag-fused Proliferating Cell Nuclear Antigen Protein (ST-PCNA) as a core protein building block, and a dumbbell-shaped tandem dimeric SpyCatcher (SC-SC) as a bridging component. Self-crosslinked PCNA/SC-SC Protein (2SP) hydrogels are successfully formed by simply mixing the solutions of ST-PCNA and SC-SC, without chemical crosslinkers.

View Article and Find Full Text PDF

Development of a comprehensive air risk index and its application to high spatial-temporal health risk assessment in a large industrial city.

Environ Pollut

December 2024

Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. Electronic address:

Particulate matter (PM) contains various hazardous air pollutants (HAPs) that can adversely affect human health, highlighting the need for an integrated index to represent the associated health risks. In response, this study developed a novel index, the comprehensive air-risk index (CARI), for Ulsan, the largest industrial city in South Korea. This index integrates toxicity-weighted concentrations of polycyclic aromatic hydrocarbons (PAHs) and heavy metals using their inhalation unit risks.

View Article and Find Full Text PDF

Cryogenic single-molecule fluorescence imaging.

BMB Rep

January 2025

Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.

Cryo-fixation techniques, including cryo-electron and cryofluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-tonoise ratios, making single-molecule imaging more accurate and insightful.

View Article and Find Full Text PDF

Electrolyte additive engineering enables the creation of long-lasting interfacial layers that protect electrodes, thus extending the lifetime of high-energy lithium-ion batteries employing Ni-rich Li[NiCoMn]O (NCM) cathodes. However, batteries face various limitations if existing additives are employed alone without an appropriate combination. Herein, the study reports the development of a molecular-engineered salt-type multifunctional additive, lithium bis(phosphorodifluoridate) triethylammonium ethenesulfonate (LiPENS), that leverages the different functionalities of phosphorous, nitrogen, and sulfur-embedded motifs, as well as the classical additive vinylene carbonate (VC), to construct protective interfacial layers.

View Article and Find Full Text PDF

The influence of transboundary air pollutants originating from the Asian continent on South Korea has been a major concern. Although organochlorine pesticides (OCPs) have been banned for several decades, they continue to be detected in the Korean environment. However, studies on the long-range atmospheric transport (LRAT) of OCPs in South Korea, particularly in background areas, remain limited.

View Article and Find Full Text PDF

The advent of next-generation nonfullerene acceptors (NFAs) has propelled major advances in organic solar cells (OSCs). Here we report an NFA design incorporating CF-terminated side chains having varying -(CH)-CF linker lengths ( = 1, 2, and 3) which introduce new intermolecular interactions, hence strong modulation of the photovoltaic response. We report a systematic comparison and contrast characterization of this NFA series with a comprehensive set of chemical/physical techniques versus the heavily studied third-generation NFA, Y6, revealing distinctive and beneficial properties of this new NFA series.

View Article and Find Full Text PDF

Nationwide monitoring of polychlorinated naphthalenes in soils across South Korea: Spatial distribution, source identification, and health risk assessment.

Chemosphere

February 2025

Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; UNIST Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. Electronic address:

Article Synopsis
  • The study reveals that even though the use of polychlorinated naphthalenes (PCNs) was banned long ago, they are still found in South Korean soils due to their persistence and emissions from industrial activities.
  • Industrial sites show significantly higher levels of PCNs compared to urban and suburban areas, with combustion sources being the primary contributor to contamination.
  • Monitoring data indicates that while cancer risks from PCNs are generally within acceptable limits, children are at a higher risk, suggesting the need for continued monitoring and assessment of these hazardous substances.
View Article and Find Full Text PDF

Radical S-adenosyl methionine enzymes catalyze a diverse repertoire of post-translational modifications in protein and peptide substrates. Among these, an exceptional and mechanistically obscure example is the installation of α-keto-β-amino acid residues by formal excision of a tyrosine-derived tyramine unit. The responsible spliceases are key maturases in a widespread family of natural products termed spliceotides that comprise potent protease inhibitors, with the installed β-residues being crucial for bioactivity.

View Article and Find Full Text PDF

To enhance the alkaline hydrogen evolution reaction (HER), it is crucial, yet challenging, to fundamentally understand and rationally modulate potential catalytic sites. In this study, we confirm that despite calculating a low water dissociation energy barrier and an appropriate H adsorption free energy (ΔG) at Ru-top sites, metallic Ru exhibits a relatively inferior activity for the alkaline HER. This is primarily because the Ru-top sites, which are potential H adsorption sites, are recessive catalytic sites, compared with the adjacent Ru-hollow sites that have a strong ΔG.

View Article and Find Full Text PDF

Solar fuel production involving the conversion of solar energy directly into chemical fuels such as hydrogen and valuable chemicals using photoelectrochemical (PEC) cells and photocatalysts (PCs) offers a promising avenue for sustainable energy while reducing carbon emissions. However, existing PEC cells and PCs fall short of economic viability due to their low solar-to-chemical (STC) conversion efficiency associated with the employed semiconductors, highlighting the clear need for identifying ideal semiconductor materials. Organic semiconductors (OSs), π-conjugated carbon-based materials, have emerged as promising candidates for enhancing STC conversion efficiency due to their remarkable optoelectrical properties, which can be readily adjustable through molecular engineering.

View Article and Find Full Text PDF

Controlled photooxidation-mediated disruption of collagens in the tumor microenvironment can reduce desmoplasia and enhance immune responsiveness. However, achieving effective light delivery to solid tumors, particularly those with dynamic volumetric changes like pancreatic ductal adenocarcinoma (PDAC), remains challenging and limits the repeated and sustained photoactivation of drugs. Here, 3D, shape-morphing, implantable photonic devices (IPDs) are introduced that enable tumor-specific and continuous light irradiation for effective metronomic photodynamic therapy (mPDT).

View Article and Find Full Text PDF

In a comprehensive study to decipher the multi-layered response to the chemotherapeutic agent temozolomide (TMZ), we analyzed 427 genomes and determined mutational patterns in a collection of ∼40 isogenic DNA repair-deficient human TK6 lymphoblast cell lines. We first demonstrate that the spontaneous mutational background is very similar to the aging-associated mutational signature SBS40 and mainly caused by polymerase zeta-mediated translesion synthesis (TLS). MSH2-/- mismatch repair (MMR) knockout in conjunction with additional repair deficiencies uncovers cryptic mutational patterns.

View Article and Find Full Text PDF

The inverse design of tailored organic molecules for specific optoelectronic devices of high complexity holds an enormous potential but has not yet been realized. Current models rely on large data sets that generally do not exist for specialized research fields. We demonstrate a closed-loop workflow that combines high-throughput synthesis of organic semiconductors to create large datasets and Bayesian optimization to discover new hole-transporting materials with tailored properties for solar cell applications.

View Article and Find Full Text PDF

The photovoltaic performance of inverted perovskite solar cells (PSCs) relies on effectively managing the interface between the hole extraction layer and the light-absorbing perovskite layer. In this study, we have synthesised (4-(3,6-bis(methylthio)-9H-carbazol-9-yl)butyl)phosphonic acid (MeS-4PACz), which forms a self-assembled monolayer (SAM) on the fluorine-doped tin oxide (FTO) electrode. The molecule's methylthio substituents generate a favourable interfacial dipole moment and interact with the perovskite layer.

View Article and Find Full Text PDF

Transformative characteristics of aquatic and soil organic matter in a constructed wetland consisting of Acorus, Nuphar, and Typha ponds.

Sci Total Environ

January 2025

Department of Environmental Engineering, College of Art, Culture, and Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Integrated Energy and Infrasystem, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea. Electronic address:

Article Synopsis
  • The study explored how dissolved organic matter (DOM) transforms in constructed wetlands (CWs) and its interaction with soil organic matter (SOM) during various treatment stages.
  • Through methods like water quality assessments and molecular analyses, findings showed that anaerobic decomposition in the Typha pond significantly increased dissolved organic carbon (DOC) levels, indicating the role of microbial activity.
  • The research highlighted that DOM in CWs interacts with organic fractions from both water and soil, influencing water quality improvement and offering insights for better CW design and management for wastewater treatment.
View Article and Find Full Text PDF

Nanoscopic mass/ion transport through heterogeneous nanostructures with various physicochemical environments occurs in both natural and artificial systems. Concentration gradient-driven mass/ion transport mechanisms, such as diffusioosmosis (DO), are primarily governed by the structural and electrical features of the nanostructures. However, these phenomena under various electrical and chemical conditions have not been adequately investigated.

View Article and Find Full Text PDF

The reduced structural complexity of atomically thin amorphous carbons makes it suitable for semiconductor technology. Inherent challenges arise from transfer processes subsequent to growth on metallic substrates, posing significant challenges to the accurate characterization of amorphous materials, thereby compromising the reliability of spectroscopic analysis. Here this work presents a novel approach: direct growth of ultra-thin amorphous carbon with tuned disorder on a dielectric substrate (SiO/Si) using photochemical reaction and thermal annealing process with a solid precursor.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-sulfur batteries (LSBs) offer high energy density but face practical challenges due to sulfur's insulating properties, volume expansion, and lithium-polysulfides (LiPSs) shuttling behavior.
  • A crosslinked cationic waterborne polyurethane (CCWPU) is introduced as a binder to enhance LSB performance by providing mechanical support and improving charge transfer while reducing LiPSs shuttling.
  • The study demonstrates that CCWPU improves sulfur utilization and cycling stability, aligning with environmental goals due to its water-based processing.
View Article and Find Full Text PDF

Revolutionizing cesium monitoring in seawater through electrochemical voltammetry and machine learning.

J Hazard Mater

February 2025

School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Monitoring radioactive cesium ions (Cs) in seawater is vital for environmental safety but remains challenging due to limitations in the accessibility, stability, and selectivity of traditional methods. This study presents an innovative approach that combines electrochemical voltammetry using nickel hexacyanoferrate (NiHCF) thin-film electrode with machine learning (ML) to enable accurate and portable detection of Cs. Optimizing the fabrication of NiHCF thin-film electrodes enabled the development of a robust sensor that generates cyclic voltammograms (CVs) sensitive to Cs⁺ concentrations as low as 1 ppb in synthetic seawater and 10 ppb in real seawater, with subtle changes in CV patterns caused by trace Cs⁺ effectively identified and analyzed using ML.

View Article and Find Full Text PDF

Electrochemical valorization of dilute reactive nitrogen compounds into ammonia: advances in catalysis and reactive separations.

ChemSusChem

December 2024

Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.

The global demand for sustainable nitrogen management has brought attention to the challenge of efficiently converting dilute nitrogen compounds, such as nitrates and nitrogen oxides, into valuable ammonia. This review emphasizes on innovative catalyst designs, including homogeneous and heterogenous catalysts tailored to low-concentration reactive nitrogen species. Moreover it explores the integration of advanced separation and concentration techniques, such as electrosorption and dialysis, to overcome mass transport limitations and enable effective electrochemical valorization.

View Article and Find Full Text PDF

Fast and accurate multi-bacterial identification using cleavable and FRET-based peptide nucleic acid probes.

Biosens Bioelectron

March 2025

Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea. Electronic address:

Fast and accurate identification of pathogenic microbes in patient samples is crucial for the timely treatment of acute infectious diseases such as sepsis. The fluorescence in situ hybridization (FISH) technique allows the rapid detection and identification of microbes based on their variation in genomic sequence without time-consuming culturing or sequencing. However, the recent explosion of microbial genomic data has made it challenging to design an appropriate set of probes for microbial mixtures.

View Article and Find Full Text PDF
Article Synopsis
  • The development of silicon (Si) materials is crucial for advancing various technologies like semiconductors and solar cells, presenting significant production challenges.
  • The study reveals that using molten AlCl salt during the thermochemical reduction of silicon oxides can enhance the reduction process, particularly with specific metals like magnesium (Mg).
  • The findings suggest that the choice of metal affects the properties of the final silicon product and allows for more efficient, cost-effective production at lower temperatures (around 250 °C).
View Article and Find Full Text PDF

Impact of particle size and oxide phase on microplastic transport through iron oxide-coated sand.

Water Res

March 2025

School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, N. W., Atlanta, GA, 30332-0355, Georgia. Electronic address:

Article Synopsis
  • Microplastics in aquatic environments pose risks to ecosystems and human health, prompting this study on the behavior of polystyrene microplastics in various sand types.
  • Through soil-column experiments, the research evaluated factors like ionic strength, breakthrough curves, and first-order attachment coefficients to understand microplastic retention.
  • Results indicated that retention increased with the type of iron oxide coating on the sand, suggesting iron-rich soils could help reduce microplastic transport in aquatic systems.
View Article and Find Full Text PDF