2,876 results match your criteria: "Ulsan National Institute of Science and Technology UNIST.[Affiliation]"
Chemistry
December 2024
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
Nanographenes and polycyclic aromatic hydrocarbons, both finite forms of graphene, are promising organic semiconducting materials because their optoelectronic and magnetic properties can be modulated through precise control of their molecular peripheries. Several atomically precise edge structures have been prepared by bottom-up synthesis; however, no systematic elucidation of these edge topologies at the molecular level has been reported. Herein, we describe rationally designed modular syntheses of isomeric dibenzoixenes with diverse molecular peripheries, including cove, zigzag, bay, fjord, and gulf structured.
View Article and Find Full Text PDFSmall
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. Electronic address:
Proteins, inherently biocompatible and biodegradable, face a challenge in forming stable hydrogels without external chemical crosslinkers. Here, we construct a ring-shaped trimeric SpyTag-fused Proliferating Cell Nuclear Antigen Protein (ST-PCNA) as a core protein building block, and a dumbbell-shaped tandem dimeric SpyCatcher (SC-SC) as a bridging component. Self-crosslinked PCNA/SC-SC Protein (2SP) hydrogels are successfully formed by simply mixing the solutions of ST-PCNA and SC-SC, without chemical crosslinkers.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. Electronic address:
Particulate matter (PM) contains various hazardous air pollutants (HAPs) that can adversely affect human health, highlighting the need for an integrated index to represent the associated health risks. In response, this study developed a novel index, the comprehensive air-risk index (CARI), for Ulsan, the largest industrial city in South Korea. This index integrates toxicity-weighted concentrations of polycyclic aromatic hydrocarbons (PAHs) and heavy metals using their inhalation unit risks.
View Article and Find Full Text PDFBMB Rep
January 2025
Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
Cryo-fixation techniques, including cryo-electron and cryofluorescence microscopy, enable the preservation of biological samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-tonoise ratios, making single-molecule imaging more accurate and insightful.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Electrolyte additive engineering enables the creation of long-lasting interfacial layers that protect electrodes, thus extending the lifetime of high-energy lithium-ion batteries employing Ni-rich Li[NiCoMn]O (NCM) cathodes. However, batteries face various limitations if existing additives are employed alone without an appropriate combination. Herein, the study reports the development of a molecular-engineered salt-type multifunctional additive, lithium bis(phosphorodifluoridate) triethylammonium ethenesulfonate (LiPENS), that leverages the different functionalities of phosphorous, nitrogen, and sulfur-embedded motifs, as well as the classical additive vinylene carbonate (VC), to construct protective interfacial layers.
View Article and Find Full Text PDFChemosphere
February 2025
Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea. Electronic address:
The influence of transboundary air pollutants originating from the Asian continent on South Korea has been a major concern. Although organochlorine pesticides (OCPs) have been banned for several decades, they continue to be detected in the Korean environment. However, studies on the long-range atmospheric transport (LRAT) of OCPs in South Korea, particularly in background areas, remain limited.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, the Materials Research Center, Trienens Institute for Sustainability and Energy Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
The advent of next-generation nonfullerene acceptors (NFAs) has propelled major advances in organic solar cells (OSCs). Here we report an NFA design incorporating CF-terminated side chains having varying -(CH)-CF linker lengths ( = 1, 2, and 3) which introduce new intermolecular interactions, hence strong modulation of the photovoltaic response. We report a systematic comparison and contrast characterization of this NFA series with a comprehensive set of chemical/physical techniques versus the heavily studied third-generation NFA, Y6, revealing distinctive and beneficial properties of this new NFA series.
View Article and Find Full Text PDFChemosphere
February 2025
Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; UNIST Environmental Analysis Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. Electronic address:
Angew Chem Int Ed Engl
December 2024
Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zurich, Switzerland.
Radical S-adenosyl methionine enzymes catalyze a diverse repertoire of post-translational modifications in protein and peptide substrates. Among these, an exceptional and mechanistically obscure example is the installation of α-keto-β-amino acid residues by formal excision of a tyrosine-derived tyramine unit. The responsible spliceases are key maturases in a widespread family of natural products termed spliceotides that comprise potent protease inhibitors, with the installed β-residues being crucial for bioactivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
To enhance the alkaline hydrogen evolution reaction (HER), it is crucial, yet challenging, to fundamentally understand and rationally modulate potential catalytic sites. In this study, we confirm that despite calculating a low water dissociation energy barrier and an appropriate H adsorption free energy (ΔG) at Ru-top sites, metallic Ru exhibits a relatively inferior activity for the alkaline HER. This is primarily because the Ru-top sites, which are potential H adsorption sites, are recessive catalytic sites, compared with the adjacent Ru-hollow sites that have a strong ΔG.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Solar fuel production involving the conversion of solar energy directly into chemical fuels such as hydrogen and valuable chemicals using photoelectrochemical (PEC) cells and photocatalysts (PCs) offers a promising avenue for sustainable energy while reducing carbon emissions. However, existing PEC cells and PCs fall short of economic viability due to their low solar-to-chemical (STC) conversion efficiency associated with the employed semiconductors, highlighting the clear need for identifying ideal semiconductor materials. Organic semiconductors (OSs), π-conjugated carbon-based materials, have emerged as promising candidates for enhancing STC conversion efficiency due to their remarkable optoelectrical properties, which can be readily adjustable through molecular engineering.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Controlled photooxidation-mediated disruption of collagens in the tumor microenvironment can reduce desmoplasia and enhance immune responsiveness. However, achieving effective light delivery to solid tumors, particularly those with dynamic volumetric changes like pancreatic ductal adenocarcinoma (PDAC), remains challenging and limits the repeated and sustained photoactivation of drugs. Here, 3D, shape-morphing, implantable photonic devices (IPDs) are introduced that enable tumor-specific and continuous light irradiation for effective metronomic photodynamic therapy (mPDT).
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea.
In a comprehensive study to decipher the multi-layered response to the chemotherapeutic agent temozolomide (TMZ), we analyzed 427 genomes and determined mutational patterns in a collection of ∼40 isogenic DNA repair-deficient human TK6 lymphoblast cell lines. We first demonstrate that the spontaneous mutational background is very similar to the aging-associated mutational signature SBS40 and mainly caused by polymerase zeta-mediated translesion synthesis (TLS). MSH2-/- mismatch repair (MMR) knockout in conjunction with additional repair deficiencies uncovers cryptic mutational patterns.
View Article and Find Full Text PDFScience
December 2024
Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Erlangen, Germany.
The inverse design of tailored organic molecules for specific optoelectronic devices of high complexity holds an enormous potential but has not yet been realized. Current models rely on large data sets that generally do not exist for specialized research fields. We demonstrate a closed-loop workflow that combines high-throughput synthesis of organic semiconductors to create large datasets and Bayesian optimization to discover new hole-transporting materials with tailored properties for solar cell applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) UNIST-gil 50, Ulsan, 44919, Republic of Korea.
The photovoltaic performance of inverted perovskite solar cells (PSCs) relies on effectively managing the interface between the hole extraction layer and the light-absorbing perovskite layer. In this study, we have synthesised (4-(3,6-bis(methylthio)-9H-carbazol-9-yl)butyl)phosphonic acid (MeS-4PACz), which forms a self-assembled monolayer (SAM) on the fluorine-doped tin oxide (FTO) electrode. The molecule's methylthio substituents generate a favourable interfacial dipole moment and interact with the perovskite layer.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Engineering, College of Art, Culture, and Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Integrated Energy and Infrasystem, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea. Electronic address:
ACS Appl Mater Interfaces
December 2024
Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
Nanoscopic mass/ion transport through heterogeneous nanostructures with various physicochemical environments occurs in both natural and artificial systems. Concentration gradient-driven mass/ion transport mechanisms, such as diffusioosmosis (DO), are primarily governed by the structural and electrical features of the nanostructures. However, these phenomena under various electrical and chemical conditions have not been adequately investigated.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
The reduced structural complexity of atomically thin amorphous carbons makes it suitable for semiconductor technology. Inherent challenges arise from transfer processes subsequent to growth on metallic substrates, posing significant challenges to the accurate characterization of amorphous materials, thereby compromising the reliability of spectroscopic analysis. Here this work presents a novel approach: direct growth of ultra-thin amorphous carbon with tuned disorder on a dielectric substrate (SiO/Si) using photochemical reaction and thermal annealing process with a solid precursor.
View Article and Find Full Text PDFSmall
December 2024
School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
J Hazard Mater
February 2025
School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea. Electronic address:
Monitoring radioactive cesium ions (Cs) in seawater is vital for environmental safety but remains challenging due to limitations in the accessibility, stability, and selectivity of traditional methods. This study presents an innovative approach that combines electrochemical voltammetry using nickel hexacyanoferrate (NiHCF) thin-film electrode with machine learning (ML) to enable accurate and portable detection of Cs. Optimizing the fabrication of NiHCF thin-film electrodes enabled the development of a robust sensor that generates cyclic voltammograms (CVs) sensitive to Cs⁺ concentrations as low as 1 ppb in synthetic seawater and 10 ppb in real seawater, with subtle changes in CV patterns caused by trace Cs⁺ effectively identified and analyzed using ML.
View Article and Find Full Text PDFChemSusChem
December 2024
Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
The global demand for sustainable nitrogen management has brought attention to the challenge of efficiently converting dilute nitrogen compounds, such as nitrates and nitrogen oxides, into valuable ammonia. This review emphasizes on innovative catalyst designs, including homogeneous and heterogenous catalysts tailored to low-concentration reactive nitrogen species. Moreover it explores the integration of advanced separation and concentration techniques, such as electrosorption and dialysis, to overcome mass transport limitations and enable effective electrochemical valorization.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea. Electronic address:
Fast and accurate identification of pathogenic microbes in patient samples is crucial for the timely treatment of acute infectious diseases such as sepsis. The fluorescence in situ hybridization (FISH) technique allows the rapid detection and identification of microbes based on their variation in genomic sequence without time-consuming culturing or sequencing. However, the recent explosion of microbial genomic data has made it challenging to design an appropriate set of probes for microbial mixtures.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Water Res
March 2025
School of Civil and Environmental Engineering, Georgia Institute of Technology, 790 Atlantic Drive, N. W., Atlanta, GA, 30332-0355, Georgia. Electronic address: