1 results match your criteria: "USA. frederick.howard@uchospitals.edu.[Affiliation]"

Given high costs of Oncotype DX (ODX) testing, widely used in recurrence risk assessment for early-stage breast cancer, studies have predicted ODX using quantitative clinicopathologic variables. However, such models have incorporated only small cohorts. Using a cohort of patients from the National Cancer Database (NCDB, n = 53,346), we trained machine learning models to predict low-risk (0-25) or high-risk (26-100) ODX using quantitative estrogen receptor (ER)/progesterone receptor (PR)/Ki-67 status, quantitative ER/PR status alone, and no quantitative features.

View Article and Find Full Text PDF