3 results match your criteria: "USA. b.spronck@maastrichtuniversity.nl.[Affiliation]"

Instability in Computational Models of Vascular Smooth Muscle Cell Contraction.

Ann Biomed Eng

September 2024

Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 40, Room C5.578A, Maastricht, 6229 ER, The Netherlands.

Purpose: Through their contractile and synthetic capacity, vascular smooth muscle cells (VSMCs) can regulate the stiffness and resistance of the circulation. To model the contraction of blood vessels, an active stress component can be added to the (passive) Cauchy stress tensor. Different constitutive formulations have been proposed to describe this active stress component.

View Article and Find Full Text PDF

Mechanical testing and constitutive modelling of isolated arterial layers yields insight into the individual layers' mechanical properties, but per se fails to recapitulate the in vivo loading state, neglecting layer-specific residual stresses. The aim of this study was to develop a testing/modelling framework that integrates layer-specific uniaxial testing data into a three-layered model of the arterial wall, thereby enabling study of layer-specific mechanics under realistic (patho)physiological conditions. Circumferentially and axially oriented strips of pig thoracic aortas (n = 10) were tested uniaxially.

View Article and Find Full Text PDF

An integrated set-up for ex vivo characterisation of biaxial murine artery biomechanics under pulsatile conditions.

Sci Rep

January 2021

Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Room 3.359, 6229ER, Maastricht, The Netherlands.

Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions.

View Article and Find Full Text PDF