21 results match your criteria: "USA. Electronic address: sankaran@broadinstitute.org.[Affiliation]"

A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children.

Cell Genom

April 2024

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.

View Article and Find Full Text PDF

Inherited blood cancer predisposition through altered transcription elongation.

Cell

February 2024

Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA. Electronic address:

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified.

View Article and Find Full Text PDF

Getting an aMPLe grasp on hematopoiesis.

Cell

September 2023

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Hematopoiesis requires balance between self-renewal of stem cells and differentiation into mature blood cells, orchestrated by pathways such as thrombopoietin signaling. In this issue of Cell, Tsutsumi et al. report the structure of the thrombopoietin ligand-receptor complex and demonstrate the potential to decouple its roles in self-renewal and hematopoietic differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on RNA polymerase II (RNA Pol II) pausing, which is important for gene regulation but difficult to study due to the essential nature of pause-release factors.
  • Researchers found mutations in the SUPT5H gene linked to β-thalassemia that disrupt RNA Pol II's pause release during the transition from progenitor to precursor cells in erythropoiesis (red blood cell formation).
  • These mutations led to delayed differentiation and altered gene expression in erythroid cells, highlighting RNA Pol II pausing's role in coordinating cell cycle progression and differentiation in blood cell development.
View Article and Find Full Text PDF

Massively parallel base editing to map variant effects in human hematopoiesis.

Cell

May 2023

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address:

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

Thalassemia.

Hematol Oncol Clin North Am

April 2023

Boston Children's Hospital, 1 Blackfan Street, Karp Family Research Building, Room 7211, Boston, MA 02115, USA. Electronic address:

View Article and Find Full Text PDF

Fetal Hemoglobin Regulation in Beta-Thalassemia.

Hematol Oncol Clin North Am

April 2023

Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA, USA. Electronic address:

β-thalassemia is caused by mutations that reduce β-globin production, causing globin chain imbalance, ineffective erythropoiesis, and consequent anemia. Increased fetal hemoglobin (HbF) levels can ameliorate the severity of β-thalassemia by compensating for the globin chain imbalance. Careful clinical observations paired with population studies and advances in human genetics have enabled the discovery of major regulators of HbF switching (i.

View Article and Find Full Text PDF

Human hematopoietic stem cell vulnerability to ferroptosis.

Cell

February 2023

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address:

Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis.

View Article and Find Full Text PDF

Vade-MECOM: How to peel back the layers of hematopoiesis.

Cell Stem Cell

November 2022

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

A recent study demonstrates how hematopoietic stem cells (HSCs) contribute minimally to blood and immune cell production during development and only become active postnatally. The work also reveals how Mecom expression can be used to distinguish rare HSCs from the more abundant progenitors that arise to maintain embryonic hematopoiesis.

View Article and Find Full Text PDF

Unraveling Hematopoiesis through the Lens of Genomics.

Cell

September 2020

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address:

Hematopoiesis has long served as a paradigm of stem cell biology and tissue homeostasis. In the past decade, the genomics revolution has ushered in powerful new methods for investigating the hematopoietic system that have provided transformative insights into its biology. As part of the advances in genomics, increasingly accurate deep sequencing and novel methods of cell tracking have revealed hematopoiesis to be more of a continuous and less of a discrete and punctuated process than originally envisioned.

View Article and Find Full Text PDF

The Polygenic and Monogenic Basis of Blood Traits and Diseases.

Cell

September 2020

Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK; National Institute for Health Research Blood and Transplant Research Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK; Department of Haematology, University of Cambridge, Cambridge, CB2 0PT, UK. Electronic address:

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics.

View Article and Find Full Text PDF

Sowing the Seeds of Clonal Hematopoiesis.

Cell Stem Cell

August 2020

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address:

As humans age, hematopoietic stem cells (HSCs) occasionally acquire mutations in genes including DNMT3A that enable them to outcompete other HSCs and increase leukemia risk. In this issue of Cell Stem Cell, Tovy et al. (2020) report a previously uncharacterized mechanism by which DNMT3A loss confers increased fitness to HSCs by analyzing a rare experiment of nature.

View Article and Find Full Text PDF

In The Blood: Connecting Variant to Function In Human Hematopoiesis.

Trends Genet

August 2020

Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA. Electronic address:

Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with a range of human diseases and traits. However, understanding the mechanisms by which these genetic variants have an impact on associated diseases and traits, often referred to as the variant-to-function (V2F) problem, remains a significant hurdle. Solving the V2F challenge requires us to identify causative genetic variants, relevant cell types/states, target genes, and mechanisms by which variants can cause diseases or alter phenotypic traits.

View Article and Find Full Text PDF

Stabilizing HIF to Ameliorate Anemia.

Cell

January 2020

Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA. Electronic address:

Erythropoietin (EPO) production in the kidney is regulated by the oxygen-sensing transcription factor HIF-1α, which is degraded under normoxic conditions by HIF-prolyl hydroxylase (HIF-PHD). Inhibition of HIF-PHD by roxadustat leads to increased EPO production, better iron absorption, and amelioration of anemia in chronic kidney disease (CKD).

View Article and Find Full Text PDF

Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis.

Cell Rep

June 2019

Division of Hematology/Oncology, Boston Children's Hospital, and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Human erythropoiesis serves as a paradigm of physiologic cellular differentiation. This process is also of considerable interest for better understanding anemias and identifying new therapies. Here, we apply deep transcriptomic and accessible chromatin profiling to characterize a faithful ex vivo human erythroid differentiation system from hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics.

Cell

March 2019

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address:

Lineage tracing provides key insights into the fate of individual cells in complex organisms. Although effective genetic labeling approaches are available in model systems, in humans, most approaches require detection of nuclear somatic mutations, which have high error rates, limited scale, and do not capture cell state information. Here, we show that somatic mutations in mtDNA can be tracked by single-cell RNA or assay for transposase accessible chromatin (ATAC) sequencing.

View Article and Find Full Text PDF

The Genetic Landscape of Diamond-Blackfan Anemia.

Am J Hum Genet

December 2018

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals.

View Article and Find Full Text PDF

Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis.

Cell

March 2018

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease.

View Article and Find Full Text PDF

Functional Selectivity in Cytokine Signaling Revealed Through a Pathogenic EPO Mutation.

Cell

March 2017

Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Cytokines are classically thought to stimulate downstream signaling pathways through monotonic activation of receptors. We describe a severe anemia resulting from a homozygous mutation (R150Q) in the cytokine erythropoietin (EPO). Surprisingly, the EPO R150Q mutant shows only a mild reduction in affinity for its receptor but has altered binding kinetics.

View Article and Find Full Text PDF

Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis.

Am J Hum Genet

August 2016

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA,; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Electronic address:

Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hematologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent samples, we identified two previously undescribed coding variants associated with lower platelet count: a common missense variant in CPS1 (rs1047891, MAF = 0.33, discovery + replication p = 6.

View Article and Find Full Text PDF

Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits.

Cell

June 2016

Division of Hematology/Oncology, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA. Electronic address:

Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity.

View Article and Find Full Text PDF