5 results match your criteria: "USA Duke University School of Medicine[Affiliation]"

Preface.

Pediatr Clin North Am

June 2022

Division of Pediatric Critical Care Medicine, Department of Pediatrics, Duke Children's Hospital, Durham, NC, USA Duke University School of Medicine.. Electronic address:

View Article and Find Full Text PDF

Oligodendrocyte precursors migrate along vasculature in the developing nervous system.

Science

January 2016

Department of Pediatrics, University of California at San Francisco (UCSF), San Francisco, CA 94158, USA. Department of Neurology, UCSF, San Francisco, CA 94158, USA. Division of Neonatology, UCSF, San Francisco, CA 94158, USA. Newborn Brain Research Institute, UCSF, San Francisco, CA 94158, USA.

Oligodendrocytes myelinate axons in the central nervous system and develop from oligodendrocyte precursor cells (OPCs) that must first migrate extensively during brain and spinal cord development. We show that OPCs require the vasculature as a physical substrate for migration. We observed that OPCs of the embryonic mouse brain and spinal cord, as well as the human cortex, emerge from progenitor domains and associate with the abluminal endothelial surface of nearby blood vessels.

View Article and Find Full Text PDF

The outbreak of Ebola virus disease in West Africa is the largest ever recorded. Numerous treatment alternatives for Ebola have been considered, including widely available repurposed drugs, but initiation of enrollment into clinical trials has been limited. The proposed trial is an adaptive platform design.

View Article and Find Full Text PDF

Introduction: Past work has shown the importance of the "pressure times time dose" (PTD) of intracranial hypertension (intracranial pressure [ICP] > 19 mm Hg) in predicting outcome after severe traumatic brain injury. We used automated data collection to measure the effect of common medications on the duration and dose of intracranial hypertension.

Methods: Patients >17 years old, admitted and requiring ICP monitoring between 2008 and 2010 at a single, large urban tertiary care facility, were retrospectively enrolled.

View Article and Find Full Text PDF

The organs of the female reproductive system are among the most dynamic tissues in the human body, undergoing repeated cycles of growth and involution from puberty through menopause. To achieve such impressive plasticity, reproductive tissues must respond not only to soluble signals (hormones, growth factors, and cytokines) but also to physical cues (mechanical forces and osmotic stress) as well. Here, we review the mechanisms underlying the process of mechanotransduction-how signals are conveyed from the extracellular matrix that surrounds the cells of reproductive tissues to the downstream molecules and signaling pathways that coordinate the cellular adaptive response to external forces.

View Article and Find Full Text PDF