5,615,514 results match your criteria: "USA; Laura and Isaac Perlmutter Cancer Center[Affiliation]"

Ultrasound tomography fundamentally relies on low-frequency data to avoid cycle skipping in full-waveform inversion (FWI). In the absence of sufficiently low-frequency data, we can extrapolate low-frequency content from existing high-frequency signals by using the same approach used in frequency-difference beamforming. This low-frequency content is then used to kickstart FWI and avoid cycle skipping at higher frequencies.

View Article and Find Full Text PDF

We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n_{0}≈1×10^{17}  cm^{-3}. We observed transverse energy transport of higher-order modes in the first ≈12  cm of the plasma channel, followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class lasers and demonstrate via simulation how control over the laser mode can significantly improve beam parameters.

View Article and Find Full Text PDF

We investigate the thermoelectric response of an Abrikosov vortex in type-II superconductors in the deep quantum limit. We consider two thermoelectric geometries, a type-II superconductor-insulator-normal-metal (S-I-N) junction and a local scanning tunneling microscope (STM)-tip normal metal probe over the superconductor. We exploit the strong breaking of particle-hole symmetry in vortex-bound states at subgap energies within the superconducting vortex to realize a giant thermoelectric response in the presence of fluxons.

View Article and Find Full Text PDF

Curvature Dependence of Gravitational-Wave Tests of General Relativity.

Phys Rev Lett

December 2024

Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.

High-energy extensions to general relativity modify the Einstein-Hilbert action with higher-order curvature corrections and theory-specific coupling constants. The order of these corrections imprints a universal curvature dependence on observations while the coupling constant controls the deviation strength. In this Letter, we leverage the theory-independent expectation that modifications to the action of a given order in spacetime curvature (Riemann tensor and contractions) lead to observational deviations that scale with the system length scale to a corresponding power.

View Article and Find Full Text PDF

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

Rejuvenation and memory, long considered the distinguishing features of spin glasses, have recently been proven to result from the growth of multiple length scales. This insight, enabled by simulations on the Janus II supercomputer, has opened the door to a quantitative analysis. We combine numerical simulations with comparable experiments to introduce two coefficients that quantify memory.

View Article and Find Full Text PDF

Negative capacitance (NC) effects in ferroelectrics can potentially break fundamental limits of power dissipation known as "Boltzmann tyranny." However, the origin of transient NC of ferroelectrics, which is attributed to two different mechanisms involving free-energy landscape and nucleation, is under intense debate. Here, we report the coexistence of transient NC and an S-shaped anomaly during the switching of ferroelectric hexagonal ferrites capacitor in an RC circuit.

View Article and Find Full Text PDF

Bootstrap Principle for the Spectrum and Scattering of Strings.

Phys Rev Lett

December 2024

Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, New York 10003, USA.

We show that the Veneziano amplitude of string theory is the unique solution to an analytically solvable bootstrap problem. Uniqueness follows from two assumptions: faster than power-law falloff in high-energy scattering and the existence of some infinite sequence in momentum transfer at which higher-spin exchanges cancel. The string amplitude-including the mass spectrum-is an output of this bootstrap.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Measurement of CP Violation Observables in D^{+}→K^{-}K^{+}π^{+} Decays.

Phys Rev Lett

December 2024

Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

A search for violation of the charge-parity (CP) symmetry in the D^{+}→K^{-}K^{+}π^{+} decay is presented, with proton-proton collision data corresponding to an integrated luminosity of 5.4  fb^{-1}, collected at a center-of-mass energy of 13 TeV with the LHCb detector. A novel model-independent technique is used to compare the D^{+} and D^{-} phase-space distributions, with instrumental asymmetries subtracted using the D_{s}^{+}→K^{-}K^{+}π^{+} decay as a control channel.

View Article and Find Full Text PDF

Electric quadrupole traps are a leading technology for suspending charged objects ranging in size from single protons to atomic and molecular ions, and even to nano- and micron-sized bodies. If the levitated objects' charge distribution contains multipoles, the time-dependent trapping fields can significantly impact its rotational motion. Here, we experimentally observe the transition from librational motion to a regime where a microparticle rotates in sync with the trap drive.

View Article and Find Full Text PDF

Developing high-precision models of the nuclear force and propagating the associated uncertainties in quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear theory. In this Letter, we demonstrate that generative machine learning models can construct novel instances of the nucleon-nucleon interaction when trained on existing potentials from the literature. In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order in chiral effective field theory and at three different choices of the resolution scale.

View Article and Find Full Text PDF

Many-Body Systems with Spurious Modular Commutators.

Phys Rev Lett

December 2024

Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA.

Recently, it was proposed that the chiral central charge of a gapped, two-dimensional quantum many-body system is proportional to a bulk ground state entanglement measure known as the modular commutator. While there is significant evidence to support this relation, we show in this Letter that it is not universal. We give examples of lattice systems that have vanishing chiral central charge, which nevertheless give nonzero "spurious" values for the modular commutator for arbitrarily large system sizes, in both one and two dimensions.

View Article and Find Full Text PDF

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.

View Article and Find Full Text PDF

Metallic Bonding in Close-Packed Structures: Structural Frustration from a Hidden Gauge Symmetry.

Phys Rev Lett

December 2024

Department of Physics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

Based on its simple valence electron configuration, we may expect lithium to have straightforward physical properties that are easily explained. However, solid lithium, when cooled below 77 K, develops a complex structure that has been debated for decades. A close parallel is found in sodium below 36 K where the crystal structure still remains unresolved.

View Article and Find Full Text PDF

The tomography of photonic quantum states is key in quantum optics, impacting quantum sensing, computing, and communication. Conventional detectors are limited in their temporal and spatial resolution, hampering high-rate quantum communication and local addressing of photonic circuits. Here, we propose to utilize free electron-photon interactions for quantum state tomography, introducing electron homodyne detection with potential for femtosecond-temporal and nanometer-spatial resolutions.

View Article and Find Full Text PDF

The phase estimation algorithm is crucial for computing the ground-state energy of a molecular electronic Hamiltonian on a quantum computer. Its efficiency depends on the overlap between the Hamiltonian's ground state and an initial state, which tends to decay exponentially with system size. We showcase a practical orbital optimization scheme to alleviate this issue.

View Article and Find Full Text PDF

The chiral lattice structure of twisted bilayer graphene with D_{6} symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field.

View Article and Find Full Text PDF

We derive a refined version of the Affleck-Ludwig-Cardy formula for a 1+1D conformal field theory, which controls the asymptotic density of high energy states on an interval transforming under a given representation of a noninvertible global symmetry. We use this to determine the universal leading and subleading contributions to the noninvertible symmetry-resolved entanglement entropy of a single interval. As a concrete example, we show that the ground state entanglement Hamiltonian for a single interval in the critical double Ising model enjoys a Kac-Paljutkin H_{8} Hopf algebra symmetry when the boundary conditions at the entangling points are chosen to preserve the product of two Kramers-Wannier symmetries, and we present the corresponding symmetry-resolved entanglement entropies.

View Article and Find Full Text PDF

Objectives: To examine factors impacting diagnostic evaluation of suspected deep vein thrombosis (DVT) by analyzing the test ordering patterns and provider decision-making within a universal health coverage system in Hungary.

Methods: We analyzed test orders for suspected DVT between 2007 and 2020, and the financial framework influencing diagnostic practices. An anonymous survey was also conducted among Emergency Department physicians to explore factors influencing diagnostic decision-making.

View Article and Find Full Text PDF

Purpose: To report a case of bilateral anterior uveitis, pigmentary retinopathy, and pars plana exudates in a patient with Celiac disease with complete resolution of inflammation following gluten-free diet.

Methods: Retrospective case report.

Results: A 19-year-old Asian Indian girl presented with bilateral non-granulomatous anterior uveitis for the past 2 months.

View Article and Find Full Text PDF

State Physical Education and Physical Activity Laws and Regulations in the United States: Estimating Mandated Time in Public Schools.

Am J Health Promot

January 2025

Department of Human Movement Studies and Special Education, Darden College of Education & Professional Studies, Old Dominion University, Norfolk, VA, USA.

Purpose: This study estimated mandated physical education (PE) and physical activity (PA) time stipulated by state laws in public schools across the 50 States and the District of Columbia, and compared these times between states with and without specified mandates across education levels.

Design: Descriptive research.

Sample: State PE and PA regulation across 50 States and the District of Columbia.

View Article and Find Full Text PDF

Purpose: To report the clinical presentation, treatment course, and outcome of a case of bilateral frosted branch angiitis (FBA) and neuroretinitis associated with acute Epstein-Barr virus (EBV) infection in a pediatric patient with Turner Syndrome.

Methods: Case report with multimodal ocular imaging and extensive systemic workup.

Results: A 16-year-old female with Turner syndrome presented with acute bilateral vision loss, hearing loss, and ataxia.

View Article and Find Full Text PDF

Book Review for Aminoff's Diagnosis of Neuromuscular Disorders, 4th Edition.

J Clin Neurophysiol

January 2025

Department of Neurology, Laboratory and Procedural Practice, EMG Laboratory, Mayo Clinic, Rochester, Minnesota, U.S.A.

View Article and Find Full Text PDF