5,617,396 results match your criteria: "USA; HCA Research Institute[Affiliation]"

Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and human health. There is an urgent need to develop safer and more sustainable pesticides.

View Article and Find Full Text PDF

Low-temperature plasma (LTP) offers a promising alternative for cancer therapy, as it targets malignant cells selectively while minimizing damage to healthy tissues. Upon interaction with an aqueous solution, LTP generates reactive oxygen and nitrogen species and thereby influences the solution's pH, which is a crucial factor in cancer proliferation and response to treatment. This study investigated the effects of LTP on the pH of aqueous solutions, with a focus on the effect of LTP parameters such as voltage, frequency, and irradiation time.

View Article and Find Full Text PDF

Scaling of Rotational Constants.

Molecules

December 2024

Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

This manuscript introduces the concept of scaling factors for rotational constants. These factors are designed to bring computed equilibrium rotational constants closer to experimentally fitted ground-state-averaged rotational constants. The parameterization of the scaling factors was performed for several levels of theory, namely DF-D/def2-VP (DF=B3LYP,PBE0, n=3(BJ),4, m=S,TZ), PBEh-3c, and r⁢2SCAN-3c.

View Article and Find Full Text PDF

Impact of Species and Tissue Differences on In Vitro Glucuronidation of Diclofenac.

Molecules

December 2024

Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.

Background: The aim of this study is to determine the impact of species and tissue differences on the glucuronidation of diclofenac in vitro.

Method: Microsomes from different species (rat, monkey, mouse, dog, and human) and rat and human tissues (liver, intestine, and kidney) were used to assess the rate of glucuronidation reaction of diclofenac. The metabolites were quantified using ultra high-performance liquid chromatography (UHPLC) and fitted into a Michaelis-Menten model to determine the metabolic kinetic parameters.

View Article and Find Full Text PDF

In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.

View Article and Find Full Text PDF

Quantum Chemical Determination of Molecular Dye Candidates for Non-Invasive Bioimaging.

Molecules

December 2024

Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA.

Molecular dyes containing carbazole-based π bridges and/or julolidine-based donors should be promising molecules for intense SWIR emission with potential application to molecular bioimaging. This study stochastically analyzes the combinations of more than 250 organic dyes constructed within the D-π-D (or equivalently D-B-D) motif. These dyes are built from 22 donors (D) and 14 π bridges (B) and are computationally examined using density functional theory (DFT).

View Article and Find Full Text PDF

First Insights into the Formation of Metal Soaps in Alkyd-Based Paints: A Proof-of-Concept Investigation Using FTIR Spectroscopy.

Molecules

December 2024

Centro per la Conservazione ed il Restauro dei Beni Culturali "La Venaria Reale", Via XX Settembre 18, 10078 Venaria Reale, Turin, Italy.

The formation of metal soaps or carboxylates in oil paintings is a widely studied topic. Expanding upon the extant research on the subject, this work investigates the formation of metal soaps as pertaining to alkyd-based media. Especially popular in modern and contemporary art, alkyd paints are complex commercial formulations mainly containing a polyester backbone obtained by the condensation of glycerol and phthalic acids, where the third free alcoholic function is esterified with a blend of saturated and unsaturated fatty acids.

View Article and Find Full Text PDF

This study examined the chemoselectivity and diastereoselectivity of silyl nitronate alkenyn-nitroethers in Intramolecular Silyl Nitronate Cycloadditions (ISNCs) to produce isoxazole derivatives with interesting medicinal properties. These reactions resulted in the formation of either dihydrofuro[3,4-c]isoxazolines/isoxazolidines and/or alkynyl moieties attached to 2,5-dihydrofuryl carbonyls. This study also discerned the diastereoselectivities of the resulting cyclic adducts and compared them to previous findings.

View Article and Find Full Text PDF

In the work presented here, we explore the upcycling of polyethylene terephthalate (PET) that was derived from water bottles. The material was granulated and extruded into a filament compatible with fused filament fabrication (FFF) additive manufacturing platforms. Three iterations of PET combined with a thermoplastic elastomer, styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA), were made with 5, 10, and 20% by mass elastomer content.

View Article and Find Full Text PDF

Implant Surface Decontamination Methods That Can Impact Implant Wettability.

Materials (Basel)

December 2024

Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA.

This review addresses the effects of various decontamination methods on the wettability of titanium and zirconia dental implants. Despite extensive research on surface wettability, there is still a significant gap in understanding how different decontamination techniques impact the inherent wettability of these surfaces. Although the literature presents inconsistent findings on the efficacy of decontamination methods such as lasers, air-polishing, UV light, and chemical treatments, the reviewed studies suggest that decontamination alters in vitro hydrophilicity.

View Article and Find Full Text PDF

Advanced Characterization of Solid-State Battery Materials Using Neutron Scattering Techniques.

Materials (Basel)

December 2024

Neutron Sciences Directorate, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA.

Advanced batteries require advanced characterization techniques, and neutron scattering is one of the most powerful experimental methods available for studying next-generation battery materials. Neutron scattering offers a non-destructive method to probe the complex structural and chemical processes occurring in batteries during operation in truly in situ/in operando measurements with a high sensitivity to battery-relevant elements such as lithium. Neutrons have energies comparable to the energies of excitations in materials and wavelengths comparable to atomic distances in the solid state, thus giving access to study structural and dynamical properties of materials on an atomic scale.

View Article and Find Full Text PDF

Accurately predicting fatigue failure in CFRP laminates requires an understanding of the cyclic behavior of their resin matrix, which plays a crucial role in the materials' overall performance. This study focuses on the temperature elevation during the cyclic loadings of the resin, driven by inelastic deformations that increase the dissipated energy. At low loading frequencies, the dissipated energy is effectively released as heat, preventing significant temperature rise and maintaining a consistent, balanced thermal state.

View Article and Find Full Text PDF

Mixed Pt-Ni Halide Perovskites for Photovoltaic Application.

Materials (Basel)

December 2024

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

CsPtI is a promising photoabsorber with a direct bandgap of 1.4 eV and a high carrier lifetime; however, the cost of Pt inhibits its commercial viability. Here, we performed a cost analysis and experimentally explored the effect of replacing Pt with earth-abundant Ni in solution-processed Cs(PtNi)(I,Cl) thin films on the properties and stability of the perovskite material.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are hybrid inorganic-organic 3D coordination polymers with metal sites and organic linkers, which are a "hot" topic in the research of sorption, separations, catalysis, sensing, and environmental remediation. In this study, we explore the molecular mechanism and kinetics of interaction of the new copper porphyrin aluminum metal-organic framework (actAl-MOF-TCPPCu) compound with a vapor of the volatile organic sulfur compound (VOSC) diethyl sulfide (DES). First, compound was synthesized by post-synthetic modification (PSM) of Al-MOF-TCPPH compound by inserting Cu ions into the porphyrin ring and characterized by complementary qualitative and quantitative chemical, structural, and spectroscopic analysis.

View Article and Find Full Text PDF

Anomalies in Long-Crack Propagation at Low ΔK in Some Engineering Alloys.

Materials (Basel)

December 2024

TDA Inc., Falls Church, VA 22043, USA.

In this article, we discuss an unusual pattern in long-crack behavior at low stress intensity factor ranges ΔK (below ΔK), characterized by an initial dip, followed by a plateau, and then an acceleration in fatigue crack growth (FCG) rate. This unanticipated FCG behavior was first observed experimentally in the IMI 834 alloy and reported by Marci in 1996. Such an anomaly is only reported from experimental observation but cannot be understood or explained using the plasticity, roughness, or oxide-induced crack closure assumptions.

View Article and Find Full Text PDF

Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished.

View Article and Find Full Text PDF

This study advances the state of the art by computing the macroscopic elastic properties of 2D periodic functionally graded microcellular materials, incorporating both isotropic and orthotropic solid phases, as seen in additively manufactured components. This is achieved through numerical homogenization and several novel MATLAB implementations (known in this study as , , , and ). The developed codes in the current work treat each cell as a material point, compute the corresponding cell elasticity tensor using numerical homogenization, and assign it to that specific point.

View Article and Find Full Text PDF

Nowadays, polycrystalline lead telluride is one of the premier substances for thermoelectric devices while remaining a hopeful competitor to current semiconductor materials used in mid-infrared photonic applications. Notwithstanding that, the development of reliable and reproducible routes for the synthesis of PbTe thin films has not yet been accomplished. As an effort toward this aim, the present article reports progress in the growth of polycrystalline indium-doped PbTe films and their study.

View Article and Find Full Text PDF

New Strains of the Entomopathogenic Nematodes , , and for White Grub Management.

Insects

December 2024

Department of Entomology, Rutgers University, 96 Lipman Dr., New Brunswick, NJ 08901, USA.

White grubs possess natural defense mechanisms against entomopathogenic nematodes (EPNs). Hence, EPN isolates that naturally infect white grubs tend to be among the most effective biological control agents of white grubs. We tested the virulence of four EPN isolates recently isolated from infected white grubs in turfgrass areas in central New Jersey, USA against third-instar larvae of , , and , which are pests of turfgrass and ornamental plants in the northeastern USA.

View Article and Find Full Text PDF

Entomopathogenic fungi (EPFs) can infect and kill a diverse range of arthropods, including ticks (Acari: Ixodidae) that can transmit various diseases to animals and humans. Consequently, the use of EPFs as a biocontrol method for managing tick populations has been explored as an alternative to chemical acaricides, which may have harmful effects on the environment and non-target species. This review summarizes studies conducted on EPFs for tick control between 1998 and 2024, identifying 9 different EPF species that have been used against 15 different species of ticks.

View Article and Find Full Text PDF

Grapevine red blotch is an emerging disease that threatens vineyard productions in North America. Grapevine red blotch virus (GRBV, species , genus , family ), the causal agent of red blotch disease, is transmitted by (Hemiptera: Membracidae) in a circulative, non-propagative mode. To gain new insight into GRBV- interactions, we delved into vertical transmission and documented a lack of transovarial transmission.

View Article and Find Full Text PDF

Different life histories result in different strategies to allocate energy in biosynthesis, including growth and reproduction, and somatic maintenance. One of the most notable life history differences between and species is that the former grow much faster than the latter, and during metamorphosis, a large amount of tissue in species disintegrates. In this review, using caterpillars and cockroach nymphs as examples, we show that, due to these differences in growth processes, cockroach nymphs spend 20 times more energy on synthesizing one unit of biomass (indirect cost of growth) than butterfly caterpillars.

View Article and Find Full Text PDF

The future of control emphasizes the transition from traditional insecticides toward more sustainable and multisectoral integrated strategies, like using -carrying mosquitoes for population suppression or replacement. We reviewed the integration of the successful Mexican initiative, "Mosquitos Buenos", with the key challenges outlined in the PAHO guidelines for incorporating innovative approaches into vector control programs. These challenges include establishing essential infrastructure, training personnel, managing field operations, and fostering community support.

View Article and Find Full Text PDF

sp. nov., a New Mite Species Infesting .

Insects

December 2024

Tropical Research and Education Center, Department of Entomology and Nematology, University of Florida, Homestead, FL 33031, USA.

, or "mamey sapote", is a tropical fruit tree native to Central America and Southern Mexico, producing sweet, nutrient and vitamin-rich fruit. Several insect pests are known to infest but none have been associated with plant growth alterations. Eriophyoid mites are well known to cause plant malformations, but mites that cause this type of damage to mamey sapote have not been reported.

View Article and Find Full Text PDF

and are two species belonging to the Plusiinae subfamily within the Noctuidae family. Due to their morphological similarity, the identification of their larvae is difficult and time-consuming. A rapid and accurate identification of these two species is essential for their management as these species exhibit differential susceptibilities to insecticides and crops engineered to express () proteins, and a molecular tool can easily provide this differentiation.

View Article and Find Full Text PDF